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Summary

Ecologic U.S. county data suggest negative associations between residential radon
exposure and lung cancer mortality (LCM)—inconsistent with clearly positive
associations revealed by occupational data on individual miners, but perhaps
explained by competing effects of cell killing vs. mutations in alpha-exposed
bronchial epithelium. To assess the latter possibility, a biologically based
ic 2-stage” (CD2) cancer-risk model was fit to combined 1950-54 age-
specific person-year data on lung cancer mortality (LCM) in white females of age 40+
y in 2,821 U.S. counties (~90% never-smokers), and in 5 cohorts of underground
miners who never smoked. New estimates of household annual average radon
exposure in U.S. counties were used, which were found to have a significant
negative ecologic association with 1950-54 LCM in U.S. white females, adjusted for
age and all subsets of two among 21 socioeconomic, climatic and other factors
considered. A good CD2 fit was obtained to the combined residential/miner data,
using biologically plausible parameter values. Without further optimization, the fit
also predicted independent inverse dose-rate effects shown (for the first time) to
occur in nonsmoking miners. Using the same U.S. county-level LCM data, a
separate study revealed a positive ecologic association between LCM and
bituminous coal use in the U.S., in agreement with epidemiological data on LCM in
women in China. The modeling results obtained are consistent with the CD2-based
hypothesis that residential radon exposure has a nonlinear U-shaped relation to
LCM risk, and that current linear no-threshold extrapolation models substantially
overestimate such risk. A U-shaped dose-response corresponds to a CD2-model
prediction that alpha radiation kills more premalignant cells than it generates at low
exposure levels, but not at higher levels. To test this hypothesis, groups of Japanese
medaka (ricefish minnows) were exposed for 10 to 14 weeks to different
concentrations of aqueous radon; histological and quantitative-morphometry
analysis of proliferative (premalignant) foci in livers from these fish are currently

being completed.
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1. Introduction and Overview

This report describes the focus, methods and results of three related research
efforts undertaken during FY97-FY98 comprising LLNL LDRD Project 97-ERD-050.
These three research efforts concerned: (1) application of a mechanistic, biologically

ased cancer-risk model to

oy 12

a y nir ry iaem ta relau‘ng

pparently contradictory epidemiological d
lung-cancer mortality (LCM) to residential and occupational exposures to radon gas;
(2) a parallel assessment of whether the same U.S. county-level LCM data used for
the latter analysis revealed an expected positive association between LCM and
lifetime use of bituminous coal for residential heating; and (3) an experimental test
of a biologically based hypothesis that premalignant-cell number (and by
implication, cancer risk) may have a nonlinear dose-response relation to alpha

radiation. An introduction and overview of these three efforts is provided below,

followed by detailed descriptions in Sections 2, 3 and 4 of this report.

The present LDRD research project stemmed from the observation that a new,
cytodynamic two-stage (CD2) cancer model developed at LLNL was able to predict
two apparently contrasting data sets relating lung-cancer mortality (LCM) to radon
exposure (Bogen, 1997). First, the model predicted a negative dose-response trend
when previously published U.S. county-level data on mean residential radon
exposures were compared to data on age-adjusted 1980s LCM in white males (both
smokers and nonsmokers); second, the model predicted a positive dose-response
trend when summary information on cumulative occupational radon exposure was
compared to previously published summary LCM estimates for underground

miners working on the Colorado Plateau. That both data sets were fit using one set



of biologically realistic CD2-parameter values suggested that low-level radon may
actually reduce lung cancer risk, that is, that the negative ecologic association
between radon and LCM risk may be biologically plausible, in view of the
mechanistically realistic two-stage carcinogenesis theory on which the CD2 model is
based. The CD2 model’s prediction is based on the expectation of competing effects
on cancer risk due to critical DNA damage vs. cell killing caused by the alpha
irradiation of bronchial surface epithelium associated with the radioactive decay of
naturally occurring radon gas. Specifically, in the case of radiation due to exposures
to the small concentrations of radon gas typically found in U.S. homes, this
radiation may kill enough premalignant cells to more than offset radiation-induced
occurrence of new premalignant cells. Higher levels of radiation, however, are
expected to increase lung-cancer risk by inducing the replacement of killed surface
cells via proliferation of underlying stem cells, which in turn promotes the clonal
expansion of any pre-existing “spontaneous” premalignant cells within the

underlying (and relatively unexposed) stem cells.

Although biologically plausible, the preliminary CD2 modeling results (Bogen,
1997) relied entirely on a previously published summary of age-adjusted LCM and
radon-exposure data, as well as on summary (rather than individual-level) data on
LCM in Colorado Plateau uranium miners. The preliminary study also estimated
the amount of cell killing caused by alpha radiation by means of fitting the CD2-
model to LCM data, rather than using published estimates from in vitro

experiments involving alpha-exposed human lung cells.



The primary goal of the present research project, therefore, was to refit the CD2
model for radon to sets of epidemiological data different than those used initially by
Bogen (1987)—data that better address the estimation of radon concentrations in
US. homes, as well as potentially confounding effects of smoking on the
interpretation of radon-LCM associations. Specially, the limitations mentioned
above were addressed by refitting the CD2 model, conditional on likely alpha
cytotoxicity, to age-specific LCM data for white females of age 40+ y in 2,821 U.S.
counties during 1950-54 (~90% of whom never smoked). Entirely new estimates of
county-specific mean residential radon levels were used, together with age-specific
(not age-adjusted) LCM data obtained for five cohorts of underground miners who

never smoked.

During FY97, we assembled new data on age-specific LCM data and estimated
corresponding residential radon concentrations in white females of age 40+ y (about
11% of whom ever smoked) in 2,821 U.S. counties during 1950-54, and in five
different groups of underground miners (a total of 2,488 miners worldwide) who
never smoked. The county-level LCM data for white women in the early 1950s,
previously unavailable in any form, were generated from raw U.S. mortality data
specifically for this study. We used new estimates of county-specific mean
residential radon levels for all US. counties recently generated by Lawrence
Berkeley National Laboratory (LBNL). In collaboration with LLNL, LBNL
performed uncertainty analyses pertaining to the new radon estimates used. A data
base of corresponding county-level census, climatological, and geophysical data were

also assembled at LLNL. Person-year data summarizing individual-level exposure



and LCM information on nonsmoking miners were obtained through the National

Cancer Institute.

Research during FY98 began with a trend-analysis of the improved “ecologic”-
type epidemiological data, followed by a refit of the CD2 model to these data (Bogen,
1998). The trend analysis revealed that radon levels were found to be significantly
negatively associated with corresponding county-level LCM rates in U.S. women
who died in 1950-54 at age 40+ or 60+ years, after adjustment for age and subsets of
21 other factors considered. A similarity in results obtained for 40+ and 60+ year-
olds indicates that inter-county differences in smoking are unlikely to explain the
observed negative associations. A good CD2 fit was obtained to the combined
residential and occupational data involving >50 data points relating radon exposure
to age-specific LCM. This fit also happens also to predict the so-called “inverse dose-
rate” effect observed previously in underground miners—but now shown—for the
first time—also to occur in nonsmoking miners in particular (Bogen, 1998).
Specifically, the CD2 fit obtained in this study predicts independent data to which
the CD2 model was not fit—a result similar to that found previously using data on
combined smoking and nonsmoking miners (Bogen, 1997). The results of this study
are consistent with the hypothesis that residential radon exposure has a nonlinear,
U-shaped relation to LCM risk, and that current linear extrapolation models may

substantially overestimate such risk (Bogen, 1998).

A parallel analysis was also conducted to determine whether, using the same
county-level data on LCM in white U.S. women during 1950-54 and corresponding

geophysical/socioeconomic/climatic covariates generated for this study, an expected



positive ecologic association could be discerned between LCM and domestic
exposure to bituminous coal (BC). Ecologic and case-control epidemiological studies
on populations of women in China have shown a strong link between domestic BC
exposure and lung cancer, but this association had never been studied in any U.S.
population. For this purpose, historical county-level data on U.S. domestic BT use
were obtained, and these data were compared to our corresponding LCM data for all
counties in which 50% or more of homes used coal for heating. We found that BC
use was—as expected—significantly positively associated with corresponding
county-level LCM rates in U.S. women dying in 1950-54 at age 40+ or 60+ years, after

adjustment for age and many other factors considered (Cullen and Bogen, 1998).

Experimental work was also conducted as part of this LDRD-sponsored project,
in collaboration with Drs. M. Okihiro and D. Hinton of the University of California,
Davis (U.C. Davis), School of Veterinary Medicine. The experimental work
involved subchronic exposure of three groups of 148 Japanese medaka fish (rice-fish
minnows) to different aqueous concentrations of radon gas at LLNL. The purpose of
the study was to examine effects of alpha exposure (arising from the decay of radon,
which partitions into fish livers at a concentration proportional to that of radon in
tank water) on the occurrence and growth of premalignant cells (namely,
enzymatically altered proliferative “foci”) in the livers of young fish exposed
subchronically to different concentrations of radon gas. A separate experiment
measured the tissue:water partition coefficient for radon between medaka soft tissue
and surrounding tank water. Examination of fish livers from the primary study are

currently being completed at U.C. Davis.



Detailed descriptions of the three efforts summarized above are provided in
Sections 2, 3 and 4 of this report, respectively, which follow. Each section is divided
into background, methods, results and (where applicable) discussion subsections.

Overall conclusions of this project are discussed in Section 5.

2. Investigation of a Mechanistic Model Relating Radon Exposure to
Lung-Cancer Risk Reflected in Combined Occupational and U.S.
Residential Data

2.1 Background

Lung cancer mortality (LCM) risk from residential radon exposure is generally
estimated by linear-no-threshold extrapolation from data on LCM in miners, and
currently is thought to pose the greatest indoor air-pollution threat in the U.S,,
causing ~10% of all lung cancer and ~20-30% of all lung cancer in nonsmokers
(NRC, 1988,1998; Puskin, 1992). In contrast, ecologic data on county-level U.S.
residential radon exposures appear negatively associated with corresponding age-
adjusted LCM rates in male or female U.S. smokers+nonsmokers during the 1980s,
inconsistent with linear-no-threshold predictions (Cohen, 1995,1997). The observed
negative association, however, is based on analyses of ecologic (in this case, county-
level rather than individual-level) data, which are subject to unavoidable potential
biases (Morgenstern, 1982; Piantadosi, 1994; Piantadosi et al., 1988), such as within-
county confounding due to smoking and age (Lubin, 1998; Smith et al., 1998).

In view of controversy regarding lung cancer risks posed by residential radon

exposure, it is interesting that Cohen’s negative association at residential exposure



levels, and elevated LCM in miners, were jointly predicted by a mechanistic
“cytodynamic 2-stage” (CD2) model of lung cancer using biologically plausible
parameter estimates (Bogen, 1997). The CD2 fit obtained also happened to predict
“inverse dose-rate” effects seen in miners, i.e., the greater risks observed in miners
exposed over longer durations conditional on any given level of cumulative
exposure (see (Lubin et al., 1994,1995a). The CD2 model realistically assumes linear-
no-threshold dose-response relations for alpha-induced cell killing and critical
mutations (Bogen, 1997). Previous 2-stage stochastic “MVK”-model applications to
radon presumed that premalignant-cell growth increases monotonically with
cytotoxic radon dose (Luebeck et al., 1996; Moolgavkar et al., 1993). In contrast, the
CD2 model may reflect net cytotoxic loss induced in exposed premalignant as well as
exposed normal cells, and thus predict reduced cancer risk whenever: (i) induced
cytotoxicity is sufficient to negate a slight net proliferative advantage presumed for
spontaneous premalignant clones, but (ii) induced mutations yield too few new
premalignant clones to offset the latter effect on tumor likelihood.

Although biologically plausible, the previous CD2 modeling results (Bogen,
1997) relied entirely on Cohen’s ecologic LCM and radon-exposure data, as well as on
summary (rather than individual-level) data on LCM in Colorado Plateau uranium
miners in specified ranges of cumulative occupational radon exposure (NRC, 1988).
The previous CD2 study was also limited by its focus on lifetime rather than age-
specific LCM risk (since different patterns of age-specific risk over time can yield the
same pattern of lifetime risk as a function of dose), and by the fact that a parameter

governing alpha cytotoxic potency was estimated rather than fixed at a likely value.



In the present study, each of these limitations was addressed by refitting the CD2
model, conditional on likely alpha cytotoxicity, to age-specific LCM data for white
females of age 40+ y in 2,821 U.S. counties during 1950-54 (~90% of whom never
smoked). Entirely new estimates of county-specific mean residential radon levels
were used, together with age-specific LCM data obtained for five cohorts of
underground miners who never smoked. The “inverse dose-rate” effect predicted
by the new CD2 fit was also compared to LCM vs. dose-rate data pertaining to these
miners. The partly ecologic design of this study (discussed below) did not remove
any of the fundamental limitations posed by ecologic data use (noted above).
Rather, this study was intended to better address the biological plausibility of
apparent nonlinearity in dose-response for radon-induced lung cancer.
2.2, Materials and Methods

Residential Mortality and Smoking Data. Age- and county-specific 1950-54 LCM
rates were obtained for U.S. white females (WF) aged 0-4, 5-9, ..., 85+ y, excluding
data for Virginia considered unreliable at the county level for that period (Marsh et
al., 1996). Analyses excluded data on women <40 y for whom LCM was quite rare.
Only ~11% (vs. ~5%) of WF who died at 40+ (vs. 60+) y in 1950-54 ever smoked,
based on survey data covering this period (Haenszel and Shimkin, 1956; Mills and
Porter, 1953). WF data were modeled for age <80 y only because the general pattern
of LCM increase (a nearly cubic function of age) did not hold for older women. Such
an apparent mortality-rate decline among the oldest age groups, which pertains to
many types of cancer (Armitage and Doll, 1957), may be due to data unreliability

(Doll and Peto, 1981) and/or population heterogeneity in cancer susceptibility,



neither of which are addressed by the CD2 model.

Rn-Exposure, Socioeconomic and Climatic Data for U.S. Counties. In addition
to VA data noted above, data for major retirement states (AZ, CA, FL) were dropped
in view of survey data indicating a large fraction of lifetime spent near residence at
time of death in nén—retirement states (Cohen, 1992b), expected even more so for
WF dying in 1950-54. New estimates of annual-average household radon
concentrations for the remaining 2,821 U.S. counties were used, based on ~4,700
annual-average (long-term) and ~50,000 3-day (short-term) radon U.S.
Environmental Protection Agency national random-survey data. To obtain the new
estimates, the latter survey data were systematically adjusted and interpolated to
non-sampled counties using Monte-Carlo and regression methods, which
incorporated county-level data on climatic and geophysical variates known to
correlate with residential radon levels (Price, 1997; Price et al., 1998). The geometric
mean levels were scaled uniformly to corresponding arithmetic means, assuming
lognormal intra-county distributions with a common approximate geometric
standard deviation of 2 (Cohen, 1992a; Price, 1999; Price, 1997).

Among the resulting new county-level estimates of household radon, 1,683
pertain to counties for which corresponding estimates were made previously using
ad hoc methods to combine survey data obtained from multiple sources (Cohen,
1995). The latter and former estimates are fairly well correlated: R* = 0.733. For
residential exposures, 1 pCi/liter (=0.037 Bq) of radon in air was assumed to
correspond to an annual exposure to 0.1935 “working level months” (WLM) of

effective alpha energy (Puskin, 1992).



Additionally, 12 types of 1950 demographic/socioeconomic data (USBC, 1953), 5
typical 1953-1975 climatic measures (Apte et al., 1997), weighted mean county
elevation using census-tract populations as weights, and county-centroid latitude
were each binned into county quintiles and were, together with a 3-level dietary Se
index (Clark et al., 1991) and U.S. region (among 9), included in pairs as factors used
in addition to age (within 10-y bins) in preliminary analyses of adjusted trend.
Significant and generally similar negative (ecologic) trends for LCM vs. radon were
obtained for all 210 sets of the 22 adjustment factors used (see Results). Therefore,
for modeling purposes, county-level age-specific LCM data were adjusted by one
representative factor (family-income quintile) and then pooled within 6 ranges of
estimated annual average household radon exposure (corresponding to median
radon concentrations of <0.394, 0.394-0.787, 0.787-1.38, 1.38-2.17, 2.17-3.15, and >3.15
pCi/L).

Occupational Data. Information from 5 of 6 cohorts for which data on LCM in
nonsmoking underground miners are available (Lubin et al., 1994,1995a; NRC, 1998)
was kindly provided by Dr. J. Lubin and coworkers. These person-year (PY) data (n =
2,488, 44,600.7 PY, 53 cases) were summérized by total LCM, PY and corresponding
PY-weighted median values of attained age in y (AGE), age at first exposure in y
(AGE,), calendar year of follow-up (YR), exposure duration in y excluding the 5y
prior to attained age (DUR), and cumulative exposure in WLM up to 5 y prior to

attained age (WLM), for the five WLM bins and three attained-age bins used by
Lubin et al., (1994, pp. 84-5), and for DUR ranges of 0-7, 8-15, and 216 y.

Cancer Risk Model. The CD2 model (Figure 1) was used with the changes
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Figure 1. Cytodynamic 2-stage (CD2) model of bronchial carcinogenesis
(Bogen, 1997), incorporating the “MVK” stochastic 2-stage framework (dashed
box; see Moolgavkar, 1983) whereby normal epithelial stem cells (S) may each
with probability mq per cell division give rise to a premalignant cell (P),
which may proliferate donally and with probability m, give rise to a
malignant cell (M). The CD2 model adds a reservoir of unexposed cells (R)
that may play a alpha-enhanced role in replacing S-cells lost at rate k; to
become reproductively dead cells (D). R-cells may progress to premalignant
(Q) and malignant (M) cells via a process parallel to yet independent from the

S—P—M process. Rates of birth (b) and death /differentiation (d) are specified
for each cell type, fris the ratio R/S under normal conditions.

11



noted. This model adapts the “MVK” 2-stage mechanistic framework, in which
transition of normal (S) to premalignant (P) cells and of P-cells to malignant cells
(M) is modeled as a doubly stochastic filtered Poisson process (Moolgavkar, 1983;
Moolgavkar et al., 1993). As applied to radon, the CD2 model additionally assumes:
(i) alpha-induced transition from S to a pool of reproductively dead cells (D), (ii)
replacement of S-cells partly by virtually unexposed cells (R) via a Verhulst
teedback-inhibition process (where f; denotes the ratio R/S under noncytotoxic
conditions), and (iii) similarly unexposed premalignant (Q) cells derived from R-

cells and subject to malignant transformation via a process similar to and
independent from the S—P—M process. Mathematical details are given in the

Appendix. In terms of notation and relations previously described (Bogen, 1997),
new assumptions used for the present study were: (1) dose rate (E) in cGy y* to
surface (secretory) cells in lobar/segmental bronchi was estimated to be 3.3 and 4.4

cGy WLM™ for residents and miners, respectively (NRC, 1991); (2) excess relative risk
was modeled as sxE (unitless) for S—P and P—M transitions; (3) k, was modeled as

E/D, with D, taken to be the inverse-variance-weighted mean (35 c¢Gy) of published

D, values for alpha-induced killing of human lung cells in vitro (Raju et al., 1993;

Simmons et al., 1996); (4) d, was modeled as b, - ¢[1 + c(bb™-1)]; (5) R—»Q and Q—»>M
transitions were presumed to occur at a background rate per cell division of wxm

(vs. the rate m assumed for S—P and P—M transitions); and (6) the target-cell

turnover rate b was assumed to have the plausible value 4y* (Bogen, 1997). Other

CD2 parameters were assigned biologically plausible values previously used (Bogen,

12



1997) (see Appendix 1 at the end of this report).

Data Analysis. The CD2 model with 6 estimated parameters (m , w , f;, § ¢, and

s) described was fit to 8 x 6 = 48 income-adjusted age- and exposure-specific

residential LCM rates, plus 3 x 5 = 15 age- and WLM-bin-specific occupational LCM

rates, assuming corresponding Poisson errors that were estimated by standard
methods (Chiang, 1984). This model was evaluated analytically (see Appendix 1),
and parameter and corresponding standard error (SE) values were obtained by
inverse-variance weighted chi-square minimization (Press et al., 1992) (ie., by a
method that is approximately maximum-likelihood, particularly with respect to
residential LCM rates based on so many cases that assumed Poisson errors were
virtually Gaussian). Outlying data were assessed by corresponding (approximate) F-
tests.

The resulting fit was also compared graphically (i.e., and not fit) to estimates
and 95% confidence-limit (CL) values for: (i) relative risk (RR) of LCM adjusted for
age and income in residential WF, based on U.S. county-level mortality data
discussed above; (ii) age-adjusted RR of LCM in residential WF as predicted by
“preferred” BEIR VI risk-extrapolation models (NRC, 1998), (iii) RR of LCM reported
by Lubin et al. (1994, p.88) as a function of WLM in 6 cohorts of never-smoking
underground miners adjusted for age, cohort, and previous occupational exposures;
and (iv) RR of LCM in 5 of the latter miner cohorts (using data discussed above)

adjusted for AGE and YR, as three functions of DUR corresponding to the WLM
ranges: <400, >400-800, and >800-1600 WLM. The latter comparison involved RRs

estimated de novo from data on 5 of 6 miner cohorts because previous studies

13



(Lubin et al., 1995a; Lubin et al., 1994; NRC, 1998) did not examine RR as a function
of DUR for miners who never smoked. A >1600-WLM exposure category was not
included in this comparison because CLs on the estimated (elevated) RRs were too
large for a comparison to CD2 predictions to be meaningful.

For the graphical comparisons described, internally standardized RR implied by
the CD2 fit (or predicted by BEIR VI models) were defined as the corresponding
weighted mean of predicted age-specific RRs, using LCM numerators (i.e., inverse
coefficients of variation) of age-specific 1950-54 rates of WF LCM as common age-
specific weights. Comparisons between the occupational data and corresponding

CD2 model predictions for LCM as functions of (i) WLM and (ii) DUR also made use
of the corresponding assumptions: (i) DUR = 9.62[1 —exp(-0.00358xWLM)]
(nonlinear least-squares fit to the 15 data subsets, R* = 0.808), and (ii) (AGE,/AGE) =
0.708 — 0.0122 x DUR (linear least-squares fit to 27 similar subsets of the occupational
data classified within three ranges of AGE, DUR and WLM cited above (R*=0.812, p
= 1.5 x 10"). Numerical maximum-likelihood methods were used to obtain all RR

and CL values, as well as to obtain adjusted chi-square values for trend in the trend
analyses mentioned above (Breslow and Day, 1987a). Also used in trend analyses
were standardized relative-risk slopes, each defined as (adjusted LCM
slope)/(unadjusted LCM intercept), with the latter slope and intercept estimated

using standard methods (Fleiss, 1981). All calculations were performed using

Mathematica 3.0® software (Wolfram, 1996).
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2.3. Results

A separate analysis (summarized in Appendix 2) addressed potential effects of
predicted intra-county variation in radon concentration on the likelihood of
misclassification pertaining to the six nominal ranges of estimated annual average

household radon exposure (corresponding to median radon concentrations of
<0.394, 0.394-0.787, 0.787-1.38, 1.38-2.17, 2.17-3.15, and >3.15 pCi/L) that were used for
the present study. This analysis showed that, despite considerable predicted intra-
county variability in radon concentration, only ~1% and ~5% of houses in lowest
and 2nd lowest radon bins, respectively, are predicted to have been misclassified
from the highest 2 bins; and only ~2% and ~7% of houses in highest and 2nd highest
radon bins, respectively, are predicted to have been misclassified from the lowest 2
bins (Price, 1999).

Table 1 summarizes results obtained from a trend analysis of LCM vs. radon-
concentration bin adjusted for age and one among 21 factors considered indicate a
consistent, significantly negative association between radon level and LCM, for all
women as well as older women. This was also found in a similar analysis of trend

adjusted for age and 210 combinations of two among the 21 other county-level

factors considered, summarized in Figure 2. From the latter analysis, the median

(and upper 2-tailed 95% CL) of p-values for (negative) trend obtained was 7.5 x 10”

(0.0032) for all women (40+ y) and 4.5 x 107 (0.0052) for older women (60+ y). The

corresponding median (and 95% CL) of relative-risk slopes was found to be -1.6
(-0.84, -2.2) L Bq™ for all women (40+ y), vs. -1.5 (-0.92, -2.1) L Bq™ for older women

(60+ y). Thus, statistically significant and generally similar negative (ecologic) trends
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Table 1. Trend in the relative risk (RR) of lung cancer mortality (LCM) among women in
U.S. counties from 1950-54 as a function of county mean residential radon level, adjusted for
various factors.*

Age 240y Age 260y

Adjusted for RR Slope*  CV* -Log,, P RR Slope** Cv* -Log,, P
age, and x(-100) (%) for %2 e x (-100) (%) for X2 eng
Age only 7.5 26 15. 7.2 25 11.
Agr. work 6.5 21 11. 8.1 19 11.
Density 6.6 21 12. 6.2 21 8.4
Elevation, 3.3 44 2.8 3.9 37 3.1
Fem. work 6.8 21 13. 6.4 21 8.8
Heating IDD 5.8 26 8.1 6.6 21 9.4
High school 8.3 18 >16. 5.9 25 6.5
Income 7.3 21 14. 7.7 18 12.
Latitude 7.9 21 15. 7.6 20 11.
Migration 6.2 24 10. 6.8 21 9.6
Poor 7.5 19 15. 6.2 24 8.2
Precip.-h 8.4 18 >16. 7.0 20 10.
Region 8.3 19 15. 7.9 19 13.
Rich 6.9 20 13. 6.5 20 8.8
Rural 6.6 20 12. 6.5 20 9.0
School 8.1 19 >16. 7.7 19 12.
Selenium 5.2 28 7.8 5.2 28 5.9
Temp. Jan 5.2 32 6.2 5.0 33 4.6
Temp. Jul 7.3 19 13. 7.0 19 9.4
Uneduc. 5.1 31 6.3 4.9 32 4.6
Urban 6.5 21 12. 6.2 20 8.5
Wind 8.0 18 >16. 7.6 18 12.
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Footnotes for Table 1

*LCM was compared among 6 groups of counties classified by mean residential
radon level (RL), after adjusting for age and the listed factors, which were classified
into U.S.-county quintiles, except as otherwise noted. Agric. work = % employed in
agriculture, Density = population density (# km®), Elevation,, = population-
weighted elevation (m), Fem. work = % females in total labor force, Heating IDD =
heating infiltration degree-days (°F-d), High school = % completed high school or
more, Income = median family income ($), Migration = # persons living in a
different county or abroad in 1945 vs. 1950, Poor = % with income <$2000, Precip.-h =
mean precipitation (h d™), Region = location among 9 U.S. divisions, Rich = % with
income > $5000, Rural/Urban = % rural-farm/urban population, School = median
schooling completed (y), Selenium = index (0, 1, or 2) of relative exposure to dietary
selenium based on foliage Se content, Temp. Jan/Jul = mean daily temperature for
Jan/Jul (°F), Uneducated = % who completed grade <5, Wind = mean daily wind
speed (m s™).

~*The standardized RR slope (Badj) was calculated as Bag = bagj/a, where b,g = the

adjusted slope for linear LCM trend, and a = the unadjusted LCM intercept; CV =

100%x(standard deviation of B.gj)/Bag;.
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Figure 2. Adjusted relative-risk slopes and corresponding p-values for
adjusted trend in 210 analyses adjusting for age and two additional variates
(among those listed in Table 1) are shown for U.S. females (a) 40+, and (b) 60+,
years of age. Cumulative distributions of normalized adjusted slope (B.g) are
surrounded by corresponding lower and upper (+1 SD) bounds; corresponding

p-values plotted as (-logyy p)™ for corresponding adjusted tests of trend are
overlaid. Slope values refer to linear trend in relative-risk of lung cancer
mortality (LCM) in U.S. females during 1950-54, for county data pooled within
6 ranges of estimated annual average household radon exposure, with slope
calculated as Badj = bagj/a where b,y = the adjusted LCM slope and a = the
unadjusted LCM intercept.
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for LCM vs. radon were observed using either data on all women (40+ y) or data
pertaining only to older women (60+ y).

An adequate CD2 fit was obtained to the combined (n = 63) age-specific
residential/miner LCM data (y* = 73.8, df=57, p = 0.066), which was improved
significantly (F,s = 9.72, p = 0.00024) by dropping one outlying data point from each

data subset (y* = 54.6, df=55, p = 0.49). Parameter estimates (+100% x SE/estimate)
corresponding to the latter CD2 fit were: mb = 0.76 x 10® y™* (+ 12%), w = 3.7 (* 27%),

Jr=0.063 (£ 50%), g = 0.0893 y* (+ 4.9%), ¢ = 0.35 (£ 65%), and s = 0.11 y cGy" (+ 160%).
Figure 3 shows the corresponding CD2 fit obtained to income-adjusted age-specific
data on LCM in U.S. WF in 1950-54 for two of the six county-mean household radon
levels considered. RR values predicted by this CD2 fit under residential-exposure
assumptions are compared in Figure 4a to: (i) corresponding RR estimates that
summarize LCM in U.S. WF in 1950-54 as a function of county-mean residential
radon level, and (ii) corresponding RR values predicted by “preferred” BEIR VI
models (NRC, 1998). Figure 4b shows how, under mining-exposure assumptions
reflecting the actual experience of nonsmoking miners, the CD2-model predicts RRs
consistent with those summarizing the age-specific miner data used. Figure 5 shows
how, under similar assumptions concerning nonsmoking miners, the CD2-model
predicts RRs consistent with “inverse dose-rate” effects on RR apparent in miners,
even though the model was not fit to any data concerning inverse dose-rate effects.
2.4. Discussion

The similarity in trend-analysis results obtained using age-specific 1950-54 data
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Figure 3. Age-specific rates of lung cancer mortality (LCM) in U.S. white
females during 1950-54 adjusted for income, pertaining to counties within 2
different ranges of county-mean residential radon concentration. The LCM
data are compared to age-specific LCM rates predicted by the 6-parameter CD2
model fit jointly to: (i) the data points shown, (ii) similar U.S. county-level
data for 4 other ranges of county-mean residential radon, and (iii) age-specific
LCM rates for a total of 2,488 miners who never smoked (goodness of fit to

combined data: y* = 54.6, df=55, p = 0.49).
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Figure 4. Relative risk (RR) of increased lung cancer mortality (LCM) in (a)
U.S. white females (WF) during 1950-54, adjusted for age and income, vs.
county-mean residential radon concentration within 6 ranges; and (b) 2,488
nonsmoking underground miners adjusted for age, cohort, and previous
occupational exposures, vs. cumulative underground mining exposure as
reported by Lubin et al. (1994). Each set of RR estimates was based on internal
comparisons to data (solid points) corresponding to the lowest exposure
group (RR = 1, dashed line), and is compared to RRs predicted by the 6-
parameter CD2 model fit to 61 age-specific LCM rates for WF and nonsmoking
miners (see Figure 3) correspondingto the RR estimates shown. Plot (a) also
shows RR for female nonsmokers predicted by the “preferred” (12- and 13-
parameter) BEIR VI linear-extrapolation models: BEIR VIc = age-exposure-
concentration model, BEIR VId = age-exposure-duration model (NRC, 1998).
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Figure 5. Relative risk (RR) of increased lung cancer mortality (LCM)
adjusted for age and year of observation in nonsmoking underground miners
within different categories of cumulative exposure, vs. mining-exposure
duration; based on internal comparison to LCM in miners exposed for <8 y
(solid points on dashed line indicating RR = 1). The RR estimates are
compared to values predicted by the 6-parameter CD2 model fit—not to the
data points shown here—but rather to 61 age-specific LCM rates for 1950-54
WF and nonsmoking miners (see Figure 2).
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on Lem in U.S. women of age 40+ vs. 60+, despite far less smoking among the older
women, indicates that inter-county confounding by smoking is unlikely to explain
the apparent negative trend in age-specific data on LCM vs. residential radon. As
noted (Introduction), these negative trends may be due entirely or in part to a
confounding artifact due to within-county correlations unaffected by the various
county-level adjustments made in this study (Lubin, 1998; Pershagen, 1998; Smith et
al., 1998). The results above indicate, however, that these negative trends are also
consistent with a biologically realistic six-parameter CD2 model that also predicts
high-dose as well as dose-rate effects in miners. In particular, CD2 estimates
obtained for bm and bmw (~10-8 y-1) are consistent with in vivo somatic hpgrt-gene-
mutation rates estimated for human T-lymphocytes, which in turn have been used
to estimate somatic human-oncogene mutation rates (King et al., 1994; Mendelsohn,
1990; Robinson et al., 1994; Trainor et al., 1984). The CD2 estimate for fg (~6%) is
consistent with relevant histological and microdosimetric variabilities, and/or with
a possible source of unexposed bronchial-epithelium stem cells within underlying
submucosal-gland ciliated ducts—see the detailed discussion and references cited in
Appendix 1 of Bogen (1997).

In conclusion, the results of this study support the biological plausibility of the
hypothesis long argued by Cohen (Cohen, 1995), that LCM is not increased by
exposure to radon at residential levels. More specifically, they are consistent with a
mechanistically based U-shaped (or “hormetic”) dose-response pattern for radon’s
effect on lung-cancer risk, but by no means prove that this pattern either is the case

or is as large as suggested by the U.S. ecologic data considered. The U-shaped CD2 fit
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obtained in this study differs sharply from linear-no-threshold models, such as the
12- or 13-parameter “BEIR VI” (NRC, 1998) models currently used to extrapolate
lung-cancer risks for low-level radon exposures (Figure 4). The present study thus

indicates that some consideration of fundamental model uncertainty ought to play a

role in ris

Furthermore, the results obtained pose testable mechanistic hypotheses
concerning the effect of subchronic or chronic exposure to relatively cytotoxic
genotoxins, such as alpha radiation, on growth kinetics of premalignant foci. After
chronic administration of chemical carcinogens, development of focal cytotoxic
resistance in proliferative foci has been attributed to clonal selection for mutations
that decrease chemical uptake, decrease metabolic activation, increase deactivation,
increase excretion, increase DNA repair, etc. (Emmelot and Scherer, 1980; Last et al.,
1987). Even so, chronic chemical carcinogen exposures have been shown to reduce
tumor yields significantly under some conditions (Kociba, 1978; Witschi et al., 1997).
In the case of radon, one underlying CD2 hypothesis is that premalignant foci are no
more resistant than surrounding normal cells to chronic alpha-induced cell death.
Focal resistance is not expected in the case of alpha radiation, because a fraction of
the damage (e.g., multiple chromosome breaks) induced is predictably misrepaired

to states that are at least reproductively lethal.

Another key CD2 hypothesis is that cell proliferation induced to compensate
for normal-cell loss from low-level alpha exposure is not accompanied by the same
amount of (or any) increased proliferation in surface-epithelial (P-cell) premalignant

foci. At low levels of induced target-cell killing, the CD2 model used posits that: (i)
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this low level of chronic cell killing is too low to induce fully compensatory cell
proliferation, and/or (ii) focal cells (already assumed to have an elevated rate of
proliferation—see Appendix) are either less responsive or totally unresponsive to
mitogenic signals that induce regenerative proliferation in surrounding normal

supported by the observation that
magnitudes of relatively increased mitotic rates in foci compared to normal rat liver
cells are characteristic of particular focal types (Zerban et al., 1994). Experiments that
address this issue directly, which have yet to be done, may thus provide data critical

to improved risk prediction for low-level exposures to those carcinogens, like alpha

radiation, expected to be similarly cytotoxic to both normal and premalignant cells.

Improved risk extrapolation for residential radon exposures will, of course,
ultimately rely on large, well designed case-control and cohort studies. Previous
non-ecologic epidemiological studies have vyielded mixed results, generally
consistent with low-dose linearity, but also insufficiently powerful and not well
designed to test specific nonlinear hypotheses (Bogen, 1997; Lubin et al., 1995b; NRC,
1998; Samet, 1989; Stidley and Samet, 1993). Better predictions will require detailed
exposure histories and lung-cancer data concerning tens of thousands of people
(Lubin et al., 1995b). A coordinated effort to generate a database of large magnitude
is now underway in Europe, Canada and the U.S. Initial results indicate a relative-
risk pattern that is nearly linear for some data sets (e.g., those focusing on areas of
relatively high residential exposure—(Darby et al., 1998; Pershagen, 1998)), but flat or
possibly U-shaped for other data sets (e.g., those focusing on combined low and high

residential-exposure areas, or on nonsmokers—(Alavanja et al., 1994; Létourneau et
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al., 1994; Pershagen, 1998; Wichmann et al., 1998)). The degree of nonlinearity
predicted by the CD2 model is a sensitive function of the ratio of cytotoxic to
mutagenic potencies assumed (Bogen, 1997). However, the key assumption behind
this predicted nonlinearity—alpha-induced killing of premalignant cells in
bronchial-surface epithelium—is highly likely. Some (albeit perhaps negligible)
nonlinearity in lung-cancer risk due to residential radon is thus predicted by
current, mechanistically based multistage cancer theory. If properly designed, future
analyses of expanded sets of residential case-control data will bound the magnitude

and significance of such nonlinearity.
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3. Historical U.S. Residential Fuel Use and Female Lung Cancer Mortality

[coauthored by J. Cullen and Dr. K.T. Bogen]
3.1 Background

U.S. female lung cancer mortality increased dramatically during the 20™ century.
Cigarette smoking patterns, movement into industrial occupations and outdoor air
pollution have been associated with this increase (Chen et al., 1992). However, despite
early century female domestication, residential air pollution has not been thoroughly
examined in relation to these historical mortality patterns.

Increasing attention has focused on the relation between residential fuel
combustion and lung disease, particularly in China where cooking and heating with coal
and wood is still a common practice (Band ef al., 1990; Chapman et al., 1988; Chen et al.,
1990; He et al., 1991; Liu et al., 1991,1993; Mumford et al., 1987,1989; Qing et al., 1993; Xu et
al., 1986,1989), as summarized in Table 2. Ecological studies have shown exceptionally
high female lung cancer mortality rates in Northern China despite an estimated 0.2%
female smoking prevalence (Band et al., 1990; Chapman et al., 1988; Chen et al., 1992; He
et al., 1991; Liu et al., 1991, Mumford et al., 1987,1989; Xu et al., 1989). Case-control studies
have also shown a strong association between residential coal use and female lung cancer
mortality in Northern China (Chen et al., 1990; Gao et al., 1987; Liu et al., 1993; Liu et al.,
1989,1991). Other putative risk factors, such as passive smoking and occupation, do not
account for the exceptionally high lung cancer mortality among these women (Band et
al., 1990; Chapman et al., 1988, Mumford et al., 1987,1989). Historically, occupational
studies of coal mining and lung cancer have been inconclusive, showing both elevated
and reduced disease rates associated with mining (Ames ef al., 1983; Armstrong et al.,

1979; Bertrand et al., 1987; Chovil, 1979; Cockcroft and Andersson, 1987; Costello et al.,
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Table 2. Association of residential coal use with increased lung cancer risk in chinese regions.

Study  Study size Exposure Risk p value
design* (Cases/Contr.) Exposure type level measure®*  Est. (or CD* Reference
Ecol, 11 Smoky coal use (%) 0% PRR 1.0 . Chen et al.
Communes 50% 15.4 NP 1990
100% 217
CC (1249/1345) Use vs. non-use (y) of: RRa Morabia et al.
centralgas 30+vs. O 0.8 NS 1992
coal stove 50+vs. 0 1.2 NS
open coalbed 20+vs. O 2.3 <0.05
coalbed 50+vs. O 3.4 <0.05
CC (110/426) Female cooking (y) 30-44 vs. <30 OR 7.23 <0.05 Wu-Williams
>44 vs. <30 8.43 NS et al. 1993
CcC (139/139) Smoky coal use Yes/No ORyq 7.53 (3.31-17.2)  Xu et al. 1989
Net tons smoky coal <3vs. O 8.24 (2.33-29.2)
used pery >3vs. O 7.53 (3.03-18.7)
<0.001 (trend)
CS 117,035 PY Males: Coal vs. gas use - RR 1.44 NP Gao et al.
SRR 1.45 NP 1987

*PRR = prevalence rate ratio, RR = relative risk, OR = odds ratio, CC = case control, CS = cross-sectional, Ecol. =
ecological, LCM = lung cancer mortality. RR,q; = RR adjusted for age, education, smoking; OR.g; = OR adjusted for age,

menstrual-cycle duration, menopause, age, family chronic-bronchitis/LC history; CI-confidence interval.
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1974; Dalal et al., 1991; Gustavsson et al., 1988; IARC, 1997; Levin et al., 1988; Lyon et al.,
1981; Meijers et al., 1988,1991; Minowa et al., 1988; Morabia ef al., 1992; Une et al., 1995;
Wu-Williams et al., 1993). However, lack of data on individual smoking behavior may
have obscured results in some of these studies (Lyon et al., 1981; Meijers et al., 1988;
Minowa et al., 1988). Importantly, a lower cancer potency of coal-mine dust versus coal
particles of incomplete combustion (PIC) might be expected based on the greater
concentrations of mutagenic compounds in the former (IARC, 1997).

Of three Northern Chinese residential fuel types, only “smoky” coal has been
linked to increased lung cancer mortality; neither “smokeless” coal nor wood fuel were
associated with any significant effect (Band et al., 1990; Chapman ef al., 1988; de Koning
and Smith, 1984, Mumford et al., 1987,1989,1990). Smoky coal is comparable to U.S.
medium-volatile bituminous coal of low sulfur content, whereas smokeless coal is more
similar to hard coal such as lignite or anthracite (Mumford et al., 1987,1989). Despite
heavy soot residue left by smoky coal, its use in China may have persisted due to its
ability to rapidly generate large amounts of heat, as measured in British thermal units
(Btu). PIC from smoky or bituminous coal are associated with elevated lung cahcer
mortality in laboratory animals (Liang et al., 1988; Pott and Stober, 1983). When burned,
smoky coal emits higher levels of sub-micron organic PIC versus wood or smokeless coal,
which are mutagenic in Ames Salmonella bioassays (Mumford et al., 1987,1990). Lung
cancer has been induced in mice exposed to coal smoke and skin cancer development has
occurred in mice treated topically with filtered organic coal extracts.(Mumford et al., 1990)
Polycyclic aromatic hydrocarbon (PAH) components of PIC, such as benzo(a)pyrene,

dibenzo(a,l)pyrene, and 7,12-dimethylbenz(a)anthracene are effective experimental and
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suspected human carcinogens (Chuang et al., 1992; Cupitt et al., 1994; de Koning and
Smith, 1984; Higginbotham et al., 1993; Mumford et al., 1989). Elevated PAH-DNA
adducts and urinary PAH levels have been associated with residential smoky coal (He et
al., 1991; Mumford et al., 1993,1995).

Cooking and heating fuels are among sources of residential air pollution. Until
the 1950’s, coal and wood were the predominant fuels burned in U.S. homes (USBC,
1953). Perhaps due to steady replacement by natural gas and electricity, few studies have
examined the public health impact of coal and wood combustion in U.S. homes
(Lambert, 1997; Samet et al., 1987,1988; USBC, 1953). Indoor wood smoke has been linked
to several respiratory illnesses, while indoor coal smoke has been measured in U.S.
homes but not studied in association with human health (Yocom et al., 1971; Cooper,
1980; de Koning and Smith, 1984; Dennis et al., 1996; Honicky et al., 1985; Liang et al., 1988;
Marbury, 1991; Mumford et al., 1989; Robin et al., 1996; Tuthill, 1984).

This ecological analysis examined the relation of U.S. domestic bituminous coal
consumption to age-specific lung cancer mortality (LCM) in U.S. white females dying
during 1950-54, the great majority of whom never smoked (particularly those = 60 years
old). A comparative analysis of these rates within different age ranges (40+ vs. 60+)
provided a way to assess the potential confounding effect of inter-county differences in
(rather low) smoking prevalence on any association observed between LCM and coal use,
as explained below. Socio-demographic, climatic, and geophysical covariates were also
examined. The present study is the first nationwide evaluation of a relationship between

coal use and lung cancer in the U.S.
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3.2. Materials and Methods

County-level LCM data for the states AL and HI were unavailable, in the case of
VA included unreliable mortality rates, and for the major retirement states (CA, AZ, and
FL) corresponded to a relatively low percent (<70%) of lifetime residence within 25 miles
of that at the time of death com
Therefore, a total of 2,821 counties were considered in this analysis, including those in
AK, AZ, CA, FL, HI and VA (as in Section 2). Because socioeconomic status and other
demographic covariates may influence indoor air pollution exposure (Lebowitz, 1983),
adjustment was performed on several demographic factors for which U.S. county-level

data could be obtained as classified below.

Lung Cancer Mortality Data. U.S. county-level mortality rates (deaths per person-

year) were obtained for lung cancer (bronchus, trachea, + lung; ICDA 162-163, 6
Revision) during 1950-54 in white females by 5-year age intervals (Marsh et al., 1996).
Due to the rarity of female lung cancer at that time, particularly in younger age groups,
data on women under age 40 were excluded and age-specific data were combined into 10-
year age intervals (40-49, 50-59, 60-69, 70-79, 80+).

Analyses were carried out for all women (40+ years) and also for women aged 60+.
The latter restriction addressed potential (inter-county) confounding due to cigarette
smoking insofar as smoking prevalence in 1950-54 among U.S. white females aged 60+
vs. 40+ was approximately 5% vs. approximately 11%, respectively, and women aged 60+
smoked fewer cigarettes and started smoking at a later age than women aged 40+
(Garfinkel, 1981; Haenszel and Shimkin, 1956; Haenszel et al., 1956). Based on these

historical smoking data, excess risk for elevated LCM in white women dying at age 40+
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(vs. 60+) in 1950-54 was estimated to be 0.74 (vs. 0.16) for women aged 40+ (vs. 60+)
compared to expected LCM risks for never-smoking women who died during this period.
This estimated 4- to 5-fold difference in excess risk indicates that any ecological
association observed between indoor BC use and female LCM due solely to inter-county
confounding by smoking should be greatly reduced in analyses involving older women
(aged 60+) compared to those involving all women considered (aged 40+).

Coal Data. The number and percent of homes using coal for (central + non-
central) heating in 1940 were obtained from U.S. census data (USBC, 1943). Because
Mumford demonstrated that “smoky” or bituminous coal, and not anthracite or
“smokeless” coal, is associated with increased female LCM, our study focused on
domestic BC consumption per se within counties that used mainly coal for heating
(Mumford et al., 1987,1989). County-level data for the year 1918 on domestic per capita
net tons of BC consumption (fuel utilization in housing units/residences, apartment
buildings, and small local businesses) were obtained from a detailed map published by
the U.S. Fuel Administration (Lesher, 1919). Similarly detailed data could not be
obtained for other years. Binned quartiles of 1918 BC consumption were used as an index
of residential coal exposure to coal smoke in our analysis. The LCM data used were based
on deaths among all residents of a county, but not all persons living in U.S. counties
burned coal. We therefore focused specifically on counties in which a substantial fraction
of homes burned coal as fuel by restricting the analysis to counties in which >75% of

homes used coal for heating.

Females dying between 1950-54 reached ages 29-33 (the approximate midpoint of

their lives) by 1918, which is the year of the coal-use data considered in the present
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analysis. To examine the potential impact any changes in net tons BC consumed
(NTBCP) per capita between 1918 and 1940, county-level consumption for nine U.S.
regions in 1918 was compared to corresponding 1940 U.S. regional summéry data on
average tons of BC consumed per dwelling unit (TBCD) (Bituminous Coal Institute,
1948). To convert from TBCD to NTBCP, regional 1940 populations were divided by
dwelling units per region in 1940, weighted by the fraction of 1940/1950 regional
populations, with removal of states not considered (as discussed). The 1918 NTBCP data
were also weighted as a fraction of the 1950 population for direct comparison to 1940
TBCD. Regions were subsequently categorized into two groups based on whether BC use
in 1940 was < or was 21 NTBCP; the two groups had a mean (1 SDM) BC use level of 0.89
(£0.036) and 1.9 (+0.053) NTBCP, respectively. This BC-use category was used as an
additional adjustment variable in our analysis, to examine the potential effect of different
patterns of change in BC use subsequent to 1918, at least at a regional level.

Demographic Data. Census data on the following 1950 county-level socio-
demographic variables were obtained: total population, population density, U.S. region
(among nine regions considered), urban population, rural-farm population, educational
level (total years), income (median family income), migration (number of persons living
in different county or abroad in 1949 vs. 1950), females in the workforce (%), and persons
employed in agriculture (%); income grouped as rich (% = $5,000 income) vs. poor (% <
$2,000 income); and educational level dichotomized as uneducated (% < grade 5) vs.
highly educated (% = high school) (USBC, 1953). These socio-demographic variables were
evaluated as corresponding county quintile values, using 1950 county populations as

weights.
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Geophysical and Nutrient Data. Respiratory exposure to radon is associated with
increased lung cancer risk in animals and underground miners, and so was included as
an adjustment variable (Bogen, 1997,1998; NRC, 1988). Clinical trials and prospective
studies have indicated that dietary selenium intake may be protective against cancer
development at s ., 1993; van den Brandt et al.,
1993). Additionally, climatic factors which might influence indoor coal smoke
concentration were included for adjustment. Geophysical variates considered at the U.S.
county-level were: annual average residential radon estimates; a 3-level index of dietary
selenium exposure based on corresponding data on selenium content in local foliage; and
five 1953-75 “typical” climatic measures, including daily hours of precipitation,
January/July temperatures, wind speed, and heating infiltration degree days or “heating
IDD” which correlates with energy use for home heating (Apte et al., 1997; Clark et al.,
1991; Price et al., 1998). Residential radon estimates used for this purpose were derived
from county-specific U.S. Environmental Protection Agency survey data, adjusted for
additional geophysical and climatic factors using Monte Carlo and regression techniques
(Price et al., 1998).

Statistical Analysis. Adjusted relative risk (RR) estimates and confidence intervals
were calculated using maximum-likelihood estimation, and corresponding adjusted chi-
square tests for trend were performed (Breslow and Day, 1987b). RR estimates were

computed using a standardized slope, B,y (in units of inverse per capita net tons of BC

adj
used), where B,y = bagj/a, and where b,q; (the adjusted LCM slope) and a (the unadjusted

LCM intercept) were estimated by standard methods (Fleiss, 1981). Standard deviation
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(SD) and coefficient of variation (CV) estimates for B were obtained assuming
approximate lognormality of b,q; and a.

Socio-demographic and geophysical variables were used for adjustment in
combination with age separately for each age range (40+ vs. 60+), creating: 20 2-variate
analyses (involving age with or without one other variable), and 190 3-variate analyses
(involving age and two other variables) (Table 3). Fisher’s chi-square test was used to
determine the overall significance of p-values for adjusted trend obtained for each set of
multiple tests conducted (Fisher, 1973). All statistical calculations were performed using
Mathematica 3.0 software (Wolfram, 1996).

3.3 Results

Approximately 640 (22.7%) of the 2,821 U.S. counties in 1940 were characterized by
75% or more homes heated by coal. Women aged 40+ in “high coal-using” counties
experienced an estimated 5,807 female LC deaths within 46,120,369 person-years (PY) of
observation versus 4,059 LC deaths among 16,887,421 PY of observation for women aged
60+. Across all counties for both age groups, a total of 14,296 LC deaths occurred in
113,999,028 PY during the period of interest. Quartiles of BC consumption across high
coal-using counties were 0.03, 0.45, 1.4, and 2.4 net tons, from lowest to highest quartile,
respectively.

Adjusted slope (B,gj) and trend-test p-values for the two-variate analyses (age and
one other variate) are summarized in Table 2 for all women (aged 40+) and for older
women (aged 60+). All adjustment combinations yielded significant statistics indicating a
positive trend, and the estimated slopes for all women (aged 40+) were similarly

distributed to those for older women (aged 60+).
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Table 3. Trend in Relative risk (RR) of 1950-54 female lung cancer mortality (LCM)
among U.S. counties in which 275% of homes used coal for heating.*

Age > 40y Age > 60 y
Adjusted for| Slope** CV** -Logio p|Slope** CV** -Logi p
age and: (x100) (%) for y%end| (x 100) (%) for y2yend
Age only 9.8 38 7.2 9.2 27 4.2
Agriculture 9.3 28 6.5 9.9 27 5.0
Density 9.4 26 6.6 9.9 23 5.0
Female work 7.9 31 4.6 9.2 27 4.2
Heating IDD 11.0 30 8.5 11.0 31 6.0
High school 11.0 30 6.3 10.0 31 4.2
Income 7.6 32 4.2 8.1 30 3.3
Migration 11.0 25 9.3 12.0 25 6.8
Poor 8.3 28 5.0 8.9 27 4.0
PrecipHr 9.3 33 6.2 10.0 32 5.1
Region 17.0 20 12 16.0 22 7.7
Rich 6.9 38 3.4 7.7 35 2.9
Rn 7.2 35 3.6 7.7 34 2.8
Rural 8.6 29 5.7 9.4 27 4.5
School 8.4 40 4.9 9.4 38 41
SeBin 10.0 31 7.7 11.0 32 5.6
TempdJan 11.0 27 8.7 11.0 26 6.4
Tempdul 9.3 31 6.3 10.0 30 5.0
Uneduc 9.0 30 5.9 10.0 26 5.0
Urban 7.8 32 4.5 8.7 30 3.8
Wind 7.3 44 3.4 6.5 53 2.0

*LCM was compared among 4 groups of counties classified by annual per capita BC
use (net tons), after adjusting for the following factors (each classified into U.S.-
county quintiles unless specified otherwise): AgWork = % employed in agriculture,

Density = persons/km”, FemWork = % females in total labor force, Heating IDD =
heating infiltration degree-days, High school = % completed high school or more,
Income = median family income, Migration = # persons who lived in different
county or abroad in 1949 vs. 1950, Poor = % with income < $2000, PrecipHr = daily
hours of precipitation, Region = location within 9 U.S. divisions, Rich = % with
income > $5000, Rural = rural farm population, School = median school years
completed, SeBin = index (0, 1, or 2) of relative exposure to dietary selenium,
TempJan/Temp]Jul = daily mean temperature for indicated month, Uneducated = %
who completed < grade 5, Urban = urban population, Wind = mean daily wind
speed.

**Slope = normalized RR slope (B) = (factor-adjusted slope of LCM as a linear
function of BC, by person-year-weighted regression)/(unadjusted intercept of

corresponding linear fit); CV = 100%X(SDjjope/ Slope); see Materials and Methods.
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Results of the three-variate analyses (age and two other variates) for all women
(aged 40+) and older women (aged 60+) are summarized in Figure 6 by corresponding
cumulative distributions of B,g;, plotted together with corresponding lower and upper (1
SD) bounds on B,g; and (-log inverse) p-values for adjusted tests of trend. The p-values
distributions in Figure 6 indicate that significant trends were obtained for almost all
three-variate adjustment combinations. Comparing highest vs. lowest BC-use quartile
among women aged 40+, simultaneous adjustment for wind and region with age showed

the most significant LCM/BC-use relationship for three-variate analyses, with RR,q =

1.68 (1.28,2.21) and p <10~ for adjusted trend while simultaneous adjustment for region

and age from two-variate analyses resulted in the most significant LCM/BC-use

association, with RR = 1.54 (1.25, 1.9) and p <10 for adjusted trend. Similar findings for
women aged 60+ were obtained for these variable combinations. The percent of p-values

>0.05 was 3% for women aged 40+ and 6% for women aged 60+, i.e. no greater than might
be expected by chance. Fisher ° values for the overall significance of the sets of 190 p-
values obtained for three-variate analyses involving 40+ and 60+ women were highly
significant (x> = 4490.5 and p=0 for 40+, * = 3363.7 and p~0 for 60+).

Adjustment for BC use in 1918 vs. 1940 produced similarly significant results when
two- and three-variate analyses were repeated.
34  Discussion

Overall, BC consumption in 1918 was shown to be significantly associated with
female LCM in 1950-54 for counties of high coal use after statistical adjustment for
numerous combinations of variates (Table 3, Figure 6). Importantly, this significant

positive LCM-BC association was observed in two female age groups, 40+ and 60+, whose
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Figure 6. Adjusted relative-risk slopes and corresponding p-values for
adjusted trend in 190 analyses adjusting for age and two additional variates,
(among those listed in Table 3) are shown for U.S. females (a) 40+, and (b) 60+,
years of age. Cumulative distributions of normalized adjusted slope (Bag;) are
surrounded by corresponding lower and upper (+1 SD) bounds; corresponding

p-values plotted as (-log p)” for adjusted tests of trend are overlaid. Slope
values refer to relative risk of lung cancer mortality (LCM) based on

comparisons of highest (>2.4 net tons) vs. lowest (<0.03 net tons) county
- quartiles of bituminous coal use, with slope calculated as Bagj = bagj/a where
bagj = the adjusted LCM slope and a = the unadjusted LCM intercept.
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1955 smoking prevalence (approximately 11% and 5%) differed markedly (Haenszel and
Shimkin, 1956, Haenszel et al., 1956), which is consistent with the hypothesis that
confounding by smoking is unlikely to explain the observed association.

Inherent limitations of the ecological study design (Greenland, 1992; Greenland
and Morgenstern, 1989; Greenland and Robins, 1994; Piantadosi, 1994; Piantadosi et al.,
1988) are countered by several unique features of the present study. The wide
investigative scope achieved from evaluating 640 U.S. counties of high coal use was a
major strength. Cigarette smoking, the most significant risk factor for lung cancer, was
addressed by performing a restricted analysis with women aged 60+, who smoked
roughly half as much as all women combined (40+). While intra-county associations
between low-prevalence smoking and coal use cannot be ruled out as explaining the
observed association between BC use and female LCM, the consistency of the observed
effect among women aged 40+ vs. 60+ indicates that the BC-LCM association is not likely
due to inter-county confounding by cigarette smoking.

Because of concern over the constancy of BC use during the lifetime of women
dying in 1950-54, the LCM-BC relationship was compared regionally in 1940 vs. 1918.
Similar findings after adjustment for regional BC use patterns of 1940 indicate that this
relationship does not appear to be attributable to changes in geographic patterns of BC use
between 1918 and 1940.

Burning rate of fuel, type of stove, and coal rank have all been shown to impact
the amount of indoor pollution generated (McCrillis and Burnet, 1990; Mumford et al.,
1989; Mumford et al., 1987). While burning rate and stove-type data were not available,

our focus on consumption of bituminous coal was intended to address this matter.
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Additionally, insofar as home ventilation is an important aspect of indoor air pollution,
heating IDD was used to examine any potential effect of home energy use that would
typically correlate with reduced home ventilation and greater indoor air pollutant

concentration.

4. Effect of Radon Exposure on Liver Foci in Japanese Medaka: An
Experimental Test of CD2-Model Predictions

4.1 Background

Experimental work conducted as part of this LDRD-sponsored project
culminated a collaboration with Mark Okihiro, D.V.M., Ph.D., and Professor David
Hinton at the University of California, Davis (U.C. Davis), School of Veterinary
Medicine. These experimental work involved subchronic exposure of three groups
of 148 Japanese medaka fish (rice-fish minnows) to different aqueous concentrations
of radon gas. The purpose of the study was to examine effects of alpha exposure
(arising from the decay of radon, which partitions into fish livers at a concentration
proportional to that of radon in tank water) on the occurrence and growth of
premalignant cells (namely, enzymatically altered proliferative “foci”) in the livers
of young fish exposed subchronically to different concentrations of radon gas.
Specifically, the study was conducted to test the CD2-based hypothesis that alpha
exposure should increase the frequency but retard the growth of liver foci. Fish
liver foci were studied because: many fish can be exposed and studied economically,

proliferative foci in liver (as opposed to most other tissues) can be identified and
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examined by staining techniques, the response of liver foci in Japanese medaka to

chemical carcinogens has been studied for decades.

4.2 Materials and Methods

Three weeks after the medaka were hatched at U.C. Davis, the fish were all
“initiated” to increase the naturally low, spontaneous occurrence of liver foci in
these fish to larger, more easily detected frequencies. Initiation was done by
exposing them for 1 hour to a 500-ppm concentration of the difect—acting mutagen
and liver carcinogen, diethylnitrosamine (DEN). Four weeks later at LLNL, the fish
were separated into three specially modified 80-liter fish tanks: a control tank, and
two tanks with water containing elevated concentrations of radon gas, derived from
a 10-mCi radium source through which 100 to 500 mL/min of dry air was directed.
To maintain different radon concentrations in tank water, air containing a
background level, a low, or a higher radon concentration was sparged continuously
into the corresponding tank water throughout the exposure period. Dried room air
was used to dilute radon-enriched air from the radium source. All tanks were

located within a single hood, illuminated from above with three 30-inch Vita-
Glow® fluorescent lamps operated using a 12-h light/dark cycle.

Each tank was sealed on top using air-tight fittings, and kept filled with between
70 and 72 liters of purified, reconstituted water (Recon) optimized for medaka
growth, which was maintained at 25 + 1 °C and pH = 7.6. Each tank included a

thermostat, and one biofilter drawing air from the tank headspace; after the sixth

week of exposure identical submerged power filters and sintered-glass bacterial
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matrices were added to each tank to enhance biofiltration efficiency. From 10 to 20%
of the water from each tank was replaced with fresh Recon once per week. Sparge
and biofilter air were circulated (with a combined flow rate of ~70 mL/min) through
each tank by an air-flow control unit adjacent to the hood containing the tanks; the
unit also directed samples of sparge and biofilter air from
corresponding RD-200 monitors that measured corresponding radon+daughter
activity in air sampled for 30 min from each source on a continually rotating basis.
A tank-air outflow of ~30 mL/min, equal to the sparge air inflow, was released from
a small port on each tank into the hood. Tank water was sampled periodically by
gas-tight syringe through a small port to monitor pH and radon, nitrite, nitrate,
oxygen, and ammonia concentrations. Fish were manually fed pre-weighed

amounts (totaling ~5% of body weight per day) of fine-grade UCD-prepared medaka

food, dispensed 2 to 4 times/day.

After 10 weeks of exposure, 40 fish were harvested from each tank, and all
remaining fish were sacrificed 4 weeks later. After sacrifice, each fish was weighed
and its liver was excised, fixed in formalin, and prepared for sectioning into slides

for histological examination and quantitative morphometry of liver foci.

A separate experiment was conducted after the 14-week radon exposure to
measure the equilibrium tissue:water partition coefficient for radon gas partitioned
between tank water and soft (relatively rapidly perfused) medaka tissue. In this
experiment, 111 fish were maintained for 48 h in a large nylon net within the sealed
high-concentration tank containing an approximate mean radon concentration of

40,000 pCi/L over that period. Over a period of ~1 min, these netted fish were then
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removed from the tank, drained, blotted dry on tissue paper, rinsed in a 10-L bucket
of Recon, and (still contained within a small portion of netting cut from the original
netting) finally placed into a 4-L. Nalgene jar pre-filled with 3.5 L of Recon. The jar
was then sealed with a screw cap including fittings allowing 500 mL/min of dry air
to be bubbled into the bottom of the jar, with air collected at the top directed into one
of the RD-200 counters mentioned above for a period of 1.5 h, after which the fish

were euthanized and weighed.

Counts from jar air measured over a 60-min period were compared to counts
measured in one subsequent and two previous control experiments, before and after
each of which the 4-L jar was thoroughly rinsed with Recon and the air lines were
purged until no counts above background were detected. The two previous control
experiments involved measuring counts for 60 min after direct injection of 10 mL of
water from the tank from which the 111 fish (weighing a total of 19.9 g) were
removed shortly thereafter. In the subsequent control experiment, the same small
piece of netting used to place the 111 fish into the 4-L jar was placed back into the
sealed tank from which the fish were taken, allowed to re-equilibrate with radon in
tank water for 15 min, and then placed into the pre-filled jar for measuring released
radon as before. Counts measured from the jar containing fish plus netting, less
those measured from the jar containing just the netting, were compared to those
measured after injection of 10 mL of tank water to determine the amount of radon

removed from the fish compared with that contained in tank water.
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4.3 Results
From the separate experiment conducted after the 14-week radon exposure, was

determined that, at equilibrium, radon is about 1.5- to 3-fold more concentrated in

rapidly perfused medaka tissue than in surroundin
the fish exposed over 10 to 14 weeks died prior to sacrifice; mortalities occurred
more often in the low-concentration tank, compared to the control and high-

concentration tanks. The examination of fish livers is currently being completed at

U.C. Davis.

5. Conclusions

In conclusion, modeling results from this LDRD study support the biological
plausibility of the hypothesis that LCM is not increased by exposure to radon at
residential levels. They are consistent with a mechanistically based U-shaped (or
“hormesis”) dose-response pattern for radon’s effect on lung-cancer risk, but by no
means prove that this pattern either is the case or is as large as suggested by the U.S.
ecologic data considered. The U-shaped CD2 fit obtained as described in Section 2
differs sharply from linear-no-threshold models currently used to extrapolate lung-
cancer risks for low-level radon exposures. The analysis described in Section 3
supports the hypothesis that ecologic data meaningfully contributed to the CD2-fit to
residential and occupational radon-vs.-LCM data described in Section 2, insofar as

the same ecologic data reveal a significant positive association between lifetime
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bituminous (smoky) coal use and LCM in U.S. women during 1950-54, in agreement
with both ecologic and case-control studies on LCM vs. coal use among women in
China. The present study thus indicates that some consideration of fundamental
model uncertainty ought to play a more important role in risk management for
residential radon (Bogen and Layton, 1998). Furthermore, the results obtained pose
testable mechanistic hypotheses concerning the effect of subchronic or chronic
exposure to relatively cytotoxic genotoxins, such as alpha radiation, on growth
kinetics of premalignant foci. One such test, described in Section 4 above, is being

completed as part of this study.
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Appendix 1
Mathematical Details of the CD2 Model

Mathematical details of the CD2 model applied to radon are presented below,
proceding from the summary description and notation in Figure 1 and Methods.
(Note: dependence of variables on time t is occasionally suppressed for
convenience.) Rates br and dr (y!) denote mean birth and death/differentiation
rates, respectively, for cell type T =S, D, P, R, or Q. It was assumed that (bp/bs) =
(bg/br) = n =10, based on values of ~5 to 20 reported in studies comparing growth
kinetics in proliferative foci and surrounding normal tissues (Barrass et al., 1993;
Dragan et al., 1994; Rotstein et al., 1986; Zerban et al., 1994). For non-cytotoxic
conditions, it was assumed that: the rate g (y'1) governs net growth of P- and Q-cell
foci (i.e., bp—dp = bg-dg = g), bs = b(1-fr), br =ds = b, and dr << b (i.e., dg = 0), where b
1 (y) is the mean R-cell turnover time. The rate b =4 y! was assumed for normal
human segmental bronchial epithelium, consistent with the range of values
measured in normal tracheobronchial epithelial cells of rats and hamsters
(Bertalanffy, 1968; Boren and Paradise, 1978; Kauffman, 1980; Reid and Jones, 1983)
and values used for purposes of human radon dosimetry (Fisher et al., 1991;
Hofmann et al., 1991).

The rate k; (y") of induced reproductive death was modeled as E/D,, with D,
taken to be the inverse-variance-weighted mean (35 cGy) of published D, values for
alpha-induced killing of human lung cells in vitro (Raju et al., 1993; Simmons et al.,
1996). Mutation rates m, (y"') were modeled as bym;(1+sE) or brm;’(1+sE), where the
corresponding mean background mutation rates per cell division, m; and m;" (i=1
for T= S or R, i=2 for T= P or Q, prime only for T= R or (J), were estimated in terms
of (unitless) parameters m and w under assumptions that m, =m, =m and m,” =
m,” =wm. Alpha-induced interphase (as opposed to reproductive) cell death was

not modeled explicitly. Tumors were assumed to be lethal at time #+7 conditional
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on M(t) = 1, where tumor latency 7 was assumed to be 5 y, consistent with the range
of values used in previous radon-related studies (Darby et al., 1995; Hornung and
Meinhardt, 1987, Moolgavkar et al., 1993; NRC, 1988,1998; Whittemore and
McMillan, 1983). Cytodynamic relations among S, D, and R cells were assumed to be
governed by a deterministic, Verhulst feedback-inhibition submodel that specifies
how bR increases to ensure that S(t)+D(f) tends toward S(0) = Sy, under the
assumptions that D cells are “recognized” by R cells as normal S cells, and that R(t) =
R(0) = Rp = frSop for all ¢ (i.e., that the increases in br to offset R-cell losses are
virtually “instantaneous” on the time scale considered). It was assumed that Sg =
108 cells, based on estimates of basal vs. secretory cell populations in human lung
(Harley, 1988; Mercer ef al., 1991);

Equations (1)-(14) below give the corresponding birth and death rates specifying
the CD2 model applied to radon in this study:

bs = b(l-fr) (1)
ds = b+k ()
bp = 0 (by definition) (3)
dp = b(2+p) (4)
bR = b+G(t) (5)
bp = nbg (6)
dp = bp-(g+k) 7)
b = nb (8)
dg = bg-gll+cbd"-1)], )
where G(t) is defined by the Verhulst relations:
G(f) =  Gleo) + afl - ([S()+D(®)]/So)} (10)
ds@)/dt = (b + G())frSo + (bs—ds)S(t) (11)
dD(t)/dt =  kS(t) + (bp—dp)D(t) . ‘ (12)

The constant ¢ (unitless) in Eq. (9) reflects an assumption that (unexposed basal)

premalignant stem (Q) cells respond to regenerative mitogenic signals via a death-
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rate decrease proportional to the increase in R-cell birth rate over its normal value,

b. The parameter a (y-1) in Eq. (10) governs the speed of S-cell replacement, and was
assumed to be sufficiently large to justify the assumption used that S(f)|E = S(e),

where for sequential exposures E; during time intervals {t;.q,f;}, S(f) is interpreted as
Si(t—ti1) such that S;(0) = Si.1(e0) and Sp(e<)=Sp, and where analogous relations were
presumed for D. Consequently, after substituting Egs. (1-4) into Egs. (10-12) and

some algebra, it follows that

| S(=°) kr 1 kr
G(oo) = —-—[b—-—J -b = = [b———] -b (13)
5o fr 1+k,16(2 - fp)l fr

The CD2 model described was evaluated using the analytic solution to the 2-

stage stochastic (MVK) model with piecewise-constant parameters, which during
each ith interval (using his notation) involves corresponding rates of mean
occurrence (Vv;), birth (B;), death (3;), and mutation (y;) of premalignant cells (Zheng,
1995). Dropping the i-subscript, the latter three rates correspond directly to the rates
bp, dp, and mp, or to the rates by, dg, and mgp, as defined above. The expressions
used for v in the S—P—-M and R—>Q—->M processes were fSomp and frSomg,
respectively. The corresponding process-specific hazard functions, Hg(t) and Hg(t),
were presumed independent and each calculated as described by Zheng (1995). The
latter independence implies that the age-specific hazard function for the 6-parameter
CD2 model described is simply H(t) = Hs(t) + Hg(t). From the fact that a single
MVK-type hazard function with at most three piecewise-constant parameters is
identifiable (Heidenreich et al., 1997), it follows directly that the 6-parameter CD2
model described is also identifiable in theory.

[Note: References cited in this Appendix appear above in the Reference Section

of this report.]
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Estimated distribution of county GSDs of indoor radon
concentrations.
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Lawrence Berkeley National Laboratory
Berkeley, CA 94720

1 Introduction

A long-standing goal of the radon research community has been to produce maps that
somehow identify areas of elevated radon (e.g. Gundersen et al. 1993, Price et al. 1997,
Cohen 1994, Alexander et al. 1993), where “elevated radon” is often somewhat vaguely
defined but may include the arithmetic mean long-term indoor concentration in the area,
or the geometric mean, or the fraction of homes exceeding some reference level such as
the EPA’s recommended action level of 4 picoCuries per liter (pCi/L). The intent of such
maps is often to identify areas for increased radon education, monitoring, and remediation,
but sometimes radon maps‘ (or, more genervally, estimated radon distributions by area) are
used for other purposes such as epidemiological modeling (Bogen 1997, Lubin and Steindorf
1995, Cohen 1995) or for analyzing costs and benefits of radon monitoring strategies (Lin
et al, 1999).

Indoor radon measurements within counties are nearly lognormally distributed, so most
quantitative predictions of radon distributions attempt to determine the geometric mean
(GM) and geometric standard deviation (GSD) of measurements by county. Observed GSDs
tend not to be highly variable compared to the GMs, and variables that are predictive of
GMs have not been found to help predict GSDs; consequently, it is common to assume that
county GSDs are identical, or that they only vary slightly. However, there is a possibility
that some counties have unusually elevated GSDs, and thus have a large fraction of high-
radon homes even if their GM concentrations are fairly low. Knowledge of the distribution

of county GSDs is thus necessary in order to determine the effectiveness of mean-based



radon mapping methods.

Furthermore, predicted radon-related cancer rates in nonlinear radiation-risk models
depend not only on arithmetic mean concentrations, but also on the distribution of radon
exposures across the population (Bogen 1997), so variation in GSDs is a potentially im-
portant complicating factor in fitting such models. For example, a model that attempts
to predict county lung cancer death rates as a adon concentration, and
that assumes that the entire county population is exposed to the county’s arithmetic mean
concentration, will substantially misclassify many or most individuals in the county. An
example is presented in Appendix I, where we consider the number of households whose
radon concentration falls into various concentration range bins, as a function of the county
arithmetic mean, for several values of county GSD.

A complication in characterizing the radon distribution within counties is that most
radon measurements are short-term measurements, usually made on the lowest level of
the home (often an unoccupied basement). Such measurements are known as “screening”
measurements and they are both biased and “noisy” compared to annual -average living-area
measurements The bias can be removed, given presently available short- and long-term
data (Whlte et a.l 1990, Price and Nero 1996), but the ex1st1ng data are not adequate
for prec1sely estlmatlng the excess variability of short-term measurements. Moreover such
excess varlabxhty probably varies by season and location. In short there is no known way
to use the varxablhty of screening measurements within areas (such as counties) to estimate
the variability of long-term living-area concentrations.

However, th.ere’ isone high—quality database of long-term living-area radon measurements
that is suitabie for quantifying the within-county variation of indoor radon concentrations:
the National Residential Radon Survey (NRRS) made radon measurements in about 5700
homes selected through a stratified random sampling scheme that'sampled a total of 125
counties across the U.S. (Lucas et al. 1992). In this paper, we present the results from fitting
these data with a statistical model that estimates both the within-county and within-census-
block variation of indoor radon concentrations, and also quantifies the extent to which the

variability itself varies among counties and census blocks.



2 The Data

The NRRS protocol used an alpha-track radon detector on every occupied level of the house,
with a measurement time of 1 year, to calculate a “household mean” radon concentration—
the arithmetic mean of the radon measurements on all occupied levels. Weighting by oc-
cupancy time was not used, so that if 80% of the inhabitants’ time was spent on one level
of the home, while only 20% was spent on another level, the household mean measurement
does not reflect this disparity. Still, this is the only large-scale random-sample survey that
monitored on every occupied level of the home, and as such it is certainly the best survey
for estimating parameters related to actual indoor exposures.

The survey also recorded a large variety of features of each home, such as the number
of appliances vented to the outdoors, the type of heating and cooling system, and so on.
Although such information has been used to produce predictive radon models, we do not
use it in the present work, which is involved in characterizing radon distributions rather
than in trying to locate high- or low-radon areas.

An impoftant complicating factor in the survey is that a stratification scheme was used
to oversamplé expected high-radon areas; furthermore, population weighting was used so
that'hiéhly populous counties were more likely to be selected than sparsely populated ones.

Sampling weights were calculated as part of the original survey. -

2.1 Components of variation

The NRRS selected 125 counties through a stratified random sampling scheme. Within each
county, exactly eight census blocks were selected (also via a stratified sampling scheme),
and a small ﬁumber of homes was selected in each block. The survey attempted to monitor
every one of those homes.

The stratification scheme must be considered when estimating the GSDs and their un-
certainties, since there is the possibility of missing very variable (or very uniform) census
blocks within a county, and since only eight census blocks are sampled within each county
so that inclusion of one census block with very high (or low) GM may also affect the es-
timated GSD. To get a feel for the magnitude of the components of variability, we plot
observed radon measurements in Figure 1 for eight of the counties in EPA’s Region III (the

mid-Atlantic states). Each thin vertical column contains the measurements from one census



block, and the blocks are divided into their counties by the vertical bars. Measurements
are plotted on a log scale using a number identifying the county (using the ‘primary sam-
pling unit’ identifier from the NRRS data). Note that some census blocks are more variable
than others within the same county (particularly noticeable in the rightmost county). This
illustrates that some census blocks are more variable than others (in log space).

In county 26 (sixth from the left) most of the census blocks have about the same mean
radon level, whereas in county 25 (seventh from the left) there appears to be substantial
variation. This illustrates that some counties have higher between-census-block variation
than others (in log space).

It is apparent, given the large variation within census blocks and the small number of
observations in each block, that the parameters associated with any individual census block
can only be poorly estimated. Indeed, even the county parameters are not well estimated
from these data—for example, county 24 (fifth from the left) has one sampled census block
with much higher radon measurements than the others in the county, containing about 1/4
of the measurements in the county. Are 1/4 of the homes in the county really that high, or is
it even higher, or much lower? Small-sample noise obviously creates substantial uncertainty
in the parameters describing individual counties, although this uncertainty can be captured

with an appropriate statistical model.

2.2 Sensitivity to measurement error.

Like all measurements, the alpha-track radon measurements were subject to error. Of par-
ticular concern for the present study is the effect of background subtraction on the GSD
estimates by county. Background subtraction is necessary because even unexposed alpha-
track detectors show some damage that is interpreted as raw counts of radiation exposure.
To remove this spurious effect, an expected number of background counts is subtracted
from the observed radon count for the detectors. However, random variation ensures that
sometimes this expected background level will overestimate the actual background, while at
other times it will underestimate it. In cases where the actual radon concentration is quite
low, subtracting an overestimate of the background count can lead to a physically impossi-
ble (and meaningless) negative radon measurement. Moreover, because of the “regression
effect”, most of the very low radon measurements (say, less than 0.3 pCi/L household mean

concentration) are underestimates of the true annual-average concentration. The influence
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of the background subtraction effect diminishes with higher radon concentrations, since the
effect is of the order of £0.1 pCi/L, which becomes a trivial adjustment for measurements
over 1 or 1.5 pCi/L.

Still, when estimating the GSDs (by county, or by census block) it is necessary to handle
the extremely low measurements somehow. Discarding them altogether is statistically in-
valid, since they really do represent homes with low radon levels. For calculating GMs and
GSDs of observed data, one can use the maximum likelihood method with an appropriate
lower limit of 0.2 or 0.3 pCi/L, but the results can still depend on where this lower limit
is set; additionally, such a method is inconsistent with complete modelling of the radon
distribution. A better approach would be to include the background subtraction effect in
the model, but the model would then be vastly more complicated.

In this work, we apply a slight adjustment to the radon measurements: we replace each
radon measurement r with v’ = r/2++/r2/4 + D, with D = 0.15 pCi/L. This transformation
has little effect on values of r above about 0.5 or 0.75 pCi/L (leading to transformed values
of 0.54 and 0.78 pCi/L, respectively), but yields transformed radon concentrations above 0
in all cases; moreover, the resulting distribution of transformed radon measurements within
each region is nearly lognormal. However, this equation is merely a convenient ad hoc
adjustment, and does not necessarily bring the measurements into line with reality.

Unfortunately, the results in the present paper are somewhat sensitive to the details of
this procedure, most notably in regions with many very low household mean radon measure-
ments: Regions 1, 6, 9, and 10, in all of which 18% or more of the reported measurements
are less than 0.3 pCi/L. For example, in one of the census blocks in Region 1 (New Eng-
land), 3 of the 5 reported mean concentrations are below 0.3 pCi/L, although none are
below 0.1. The sampling GSD of the observed data is 2.08, but the GSD of the transformed
data (transformed as above) is 1.48, and if D=0.1 pCi/L were used as the adjustment rather
than 0.15 pCi/L, then the GSD of the transformed data would be 1.62.

In short, given the shortcomings of the data it is difficult to estimate the actual GSDs

for areas in which many of the radon measurements are very low.



3 The Model
3.1 Model definition

The NRRS data are stratified, and this stratification must be accounted for in estimating
the county GSDs. After some preliminary investigations, it was clear that a realistic statis-
tical model of the NRRS measurements must include several components of variation: the
individual-house measurements are more variable in some census blocks than in others, and
the census block GMs more variable in some counties than in others.

Let y;;x be the log measurement in home k, in census block j of county 2. We will denote
the vector of {y;;} values with y, and likewise will denote the vector of any of the following
parameters by dropping the subscripts.

We assume that the house-to-house variance within a census block, 6%, varies from one
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census block to the next:

Yijk ~ N(6; + ¢35, 6%) (1)
where 6; is the county effect for county ¢ and ¢;; is the census block effect for block j in
county ¢.

We further assume that the county effects are normally distributed about some grand

mean p:
ek ~ N(lu’77.2)7 (2)

and that the census block effects are normally distributed about zero, with the variance in

census block effect itself varying among counties:
¢ij ~ N(0,057). (3)

We further assume that the variances are drawn from distributions

of; ~ Inv-x*(vs,04) (4)
and
6% ~ Inv-x*(v5,45), (5)

with 1/v, and 1/vs given flat (uniform) prior distributions from 0 to infinity.



3.2 Fitting the model

The model was fit with a combination of alternating conditional sampling (also known as the
Gibbs Sampler) and Metropolis Monte Carlo methods, as described in Gelman et al. (1995).

Ignoring the Metropolis steps for the moment, the Gibbs Sampler holds all of the param-
eters fixed except for one, and draws a candidate value of that parameter from the sampling
distribution conditional on the values of all of the other parameters (plus the data). Thus it
is necessary to work out the conditional distribution of each parameter, given the other pa-
rameters and the data. For notational simplicity, we introduce notation so that - represents
the entire set of data and parameters in the model: {y}, 1,7, {c}, {¢}, {0}, vs,vs, 00, &9, with
a bracketed symbol following v denoting all of the parameters ezcept the subscripted one.
The resulting equations for each parameter are (from application of Bayes’s theorem): For

the county and block effects,

>k (Wije — 6:) /6% 1
¢ij|7[¢] ~ N( 1/01-2 T nij/(s;’zj ] 3 1/0’12 i nij/al"?j), (6)
and 2 Ny .. 52
0716) ~ Nt s T W~ 95)/0 ! ) ()

1/72+Ejn,-j/6i2j ,1/72+Zjnij/5i2j

The conditional distributions of 67; and o; are scaled-inverse-x*:

V500 + Dok Yigk — (0; + ¢ij))

% 1716] ~ Inv-x2(vs + nij, Vs + 1 (8)
and 2L g
Voo + 2. Pij
o?vlo] ~ Inv-x*(vs + npi, W) (9)
where np; is the number of secondary sampling units in county 3.
Finally, the distributions of §; and o9 are Gamma:
gl/ Vgl ma
oolv[oo) ~ 741, Z A (10)
and
ngnu(5 nw
doly[deltag] ~ +1, %: 252 (11)

Note that the model defined above does take account of the stratification structure of

the data, but does not include the over- and under-sampling of some areas. Taking account



of the stratification would be necessary if we were analyzing GMs, but investigation (using
both ordinary and Bayesian regressions) shows no correlation between GSDs and sampling
weights, although there is a correlation between GMs and sampling weights). Areas that
were more likely to be sampled have neither higher nor lower GSDs than areas that were

less likely to be sampled.

4 Results

Before discussing the results, we caution the reader that an unusual amount of attention is
required in order to understand what is being said in this section. Recall that the overall
goal is not to try to characterize the within-county variability of radon (that is, we are
not trying to estimate a GSD within a county), rather we are trying to characterize the
distribution of GSDs, or to put it another way, to characterize the variability of the within-
county variability. Already this can be confusing, but we are also compelled to discuss the
uncertainty in the distribution of variabilities. This presents some challenge in terms of
clarity of exposition.

Starting from the most understandable level: the results of the analysis do include
estimates (and uncertainties) of the variances for each of the individual census blocks and
counties in the NRRS data; however, as these constitute a total of only 125 of the 3000
U.S. counties, and only eight of the census blocks within each county, these particular
parameters are not particularly informative. More importantly, the analysis estimates the
so-called “hyperparameters” describing the overall distribution of variances between census
blocks and between homes within census blocks. The situation is somewhat analogous to
using the NRRS data to estimate the distribution of household radon concentrations in
the U.S.—the geometric mean, geometric standard deviation, etc., can be determined for
the whole U.S. and for individual regions, but this knowledge does not tell us which U.S.
counties have elevated or depressed radon levels. Similarly, the present analysis tells us the
distribution of county GSDs, but does not tell us which GSDs are high and which are low
(except for those included in the data, of course).

Table 4 shows central parameter estimates for each region. The Monte Carlo method
used to estimate the parameters generates many estimates (we used 8000 Monte Carlo steps)
for each parameter; the table shows the median value of the hyperparameters describing the

within-county variability, as well as the implied 50% range of county GSD’s. For instance,



Table 1: Central estimates of parameter values, by region.

median median median median | est. percentiles of GSD dist.
Region o? Vg 862 Vs 10 25 50 75 90
I 0.453 29 0.500 311253 261 271 2.82 295
II 0.288 34 0.401 17 1 2.28 232 238 245 258
II1 0.226 54 0.316 71220 223 227 231 236
v 0.187 17 0.405 21 | 2.14 2.17 224 230 2.40
\Y 0.219 21 0.361 26 1 2.10 2.14 220 2.28 2.35
VI 0.266 22 0.324 16 { 2.11 217 2.23 232 245
VII 0.201 17 0.365 24 1208 214 219 227 237
VIII 0.218 47 0.326 121212 214 218 223 227
X 0.135 51 0.209 101 1.83 1.86 1.89 1.92 1.95
X 0.230 39 0.298 24 12.03 207 211 217 221

for Region I (New England), the median estimate of o2 is 0.325, and the median estimate
of v is 65. If these estimates are accurate, then (conditional on the model, of course) most
counties in New England have about the same between-census-block variability—65 degrees
of freedom is a fairly large number in the scaled inverse-chi-squared distribution. The lower
estimate of v, 31, implies that some census blocks have more between-house variability
than others do. The combination of the estimated variation in between-house variability
and the estimated variation in between-block variability yields estimates of the variation
in the GSDs within this region: as the table indicates, if the central parameter estimates
are correct then in EPA’s Region I the median GSD is 2.71, and about 50% of GSDs fall
between 2.61 and 2.82.

The uniformity of the GSD estimates across the entire U.S. is striking: almost all regions
have median GSDs in the neighborhood of 2.2, and about half of the counties in the U.S.
have GSDs between 2.15 and 2.35., with only regions I and IX deviating substantially from
this pattern. Moreover, the partitioning of this variation into its components (within-block

and between-block) is very similar across regions.

4.1 Uncertainties in the distributional parameters

Table 4 indicates only the central estimates of each parameter and the implied distribution of
GSDs if these “best guess” values are actually true. But in fact, there is some uncertainty in
some of the parameters—uv,, and v in particular. If the true values are actually substantially

lower than the central estimates, then the distributions of between-block and between-home-



within-block variances are wider, leading to more variability in county GSDs.

The most intuitive way to summarize the uncertainty in the distribution of GSDs is to
consider how wide or narrow the distribution could be, given the uncertainties of the various
parameters. For instance, in Region II we estimate that the 90th percentile of county GSDs
is 2.58, but of course the true 90th percentile could instead be higher or lower than this
value. What is the range in which we are fairly certain that the 90th percentile actually
falls?

The uncertainties vary somewhat by region, but one standard error tends to be of the
order of +0.08 for the 10th and 25th percentile GSD, £0.09 for the median, +0.10 for the
75th percentile, and +£0.15 for the 90th percentile.

Actually the posterior distributions are not normal distributions, so that assuming nor-
mality doesn’t quite give the right error bounds for a region containing 90% of the proba-
bility. For instance, the 10th percentile in Region II is almost certainly between 2.06 and
2.35 (the region containing the central 90% of probability), rather than between 2.02 and
2.37 as would obtain, given the standard error for the 10th percentile of 087 in this region,
if the posterior distribution were normal.

As indicated above, although the estimates are reasonably certain for the 10th percentile
and the median GSD in each region, there is much more uncertainty in just how high the
highest GSDs in a region could be—the uncertainty in the 90th percentile is really fairly
large. For instance, we cannot completely rule out the possibility that the most variable
10% of the counties in Region II could have GSDs over 2.8: the estimated 90th percentile
in that region is 2.58, but with an uncertainty (one standard error) of £0.15.

It is worth noting that GSDs of short-term “screening” data tend to be much higher
than these estimates of true living-area-average GSDs, with observed county GSDs over
3.0 being fairly common for screening data. It has of course long been recognized that
screening measurements are more variable than annual-average living-area measurements,
due to temporal variability, lack of spatial averaging within the house, and so on. Still,
we are aware of several cases (unpublished) in which state departments of health have
used screening GSDs in conjunction with estimated county GMs in order to estimate the
fraction of homes with living-area concentrations over a threshold such as 4 pCi/L. Since
the screening GSDs tend to be much higher than the actual concentrations, this procedure

will generally lead to a greatly elevated estimate of the fraction of homes exceeding the
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reference level.

4.2 Model validation

Even before seeing the results, one might suspect several shortcomings in the statistical
model. For example, it seems reasonable to think that counties that show unusually large
variation between census block means (that is, counties with large values of ¢;) might also
show unusually large variation between homes within census blocks (that is, high values of
i)

The best way to include such a possibility would be to incorporate such a correlation
in the model and explicitly estimate its magnitude. We have not done this. Instead, we
fit the model without such a correlation, and examine the correlation between between-
and within-block variability in the posterior distributions. This is not quite right, and will
generally lead to an underestimate of the correlation, but at least we would expect to see
gross effects if they were present. But in fact, there is no evidence of such an effect. To put
it another way, any such effect then is small compared to the uncertainties in estimating it,
since these uncertainties tend to be rather large. For a given county, some census blocks
can be much more variable than others (the number of degrees of freedom vj is below 20 in
most regions), and since only 8 census blocks were monitored in each county if some blocks
show more internal variability than others it is hard to tell whether the entire county shares
this feature, or whether one or two blocks with unusually high variability simply happened
to be sampled (or, for that matter, whether the extra variability is simply due to small-
sample variation within the block). Thus the correlation between within- and between-block
variability is swamped by the uncertainties in the various parameters.

A more serious problem is revealed by posterior predictive checks. In a posterior pre-
dictive check, the model is fit to the data, and then the parameters of the model are used
to create simulated data. These simulated data are then compared to the actual data. The
process seems circular—won’t the simulated data match the actual data perfectly, since the
simulated data are based on the fit to the actual data? The answer is “no”, because the
model makes certain assumptions (normality, inverse-chi-squared distribution of variances,
etc.), and if these assumptions are significantly violated then the simulated data will not
agree with the observed data.

Unfortunately, this phenomenon actually occurs, notably for Regions I, II, and XI:

11



when we simulate data from the models, there are some noticeable differences between the
simulated data and the actual observations. In particular, in these regions the highest
observed GSDs within individual census blocks are consistently somewhat higher (of the
order of 10% higher) than expected based on simulating from the model. Note that all of
these regions have a large fraction of homes with very low radon measurements. Since the
observed GSDs (and, via the model, the simulated GSDs) are sensitive to details of how
such low measurements are handled, it seems likely that the poor model fit in these regions
is due to inadequate modelling of the background subtraction effect. Unfortunately, this
implies that the GSD parameter estimates in these regions are unreliable. In particular, we
suspect that the true GSDs in Region I are considerably lower than the model implies, and
those in Region IX may be substantially higher.

Model fit is much better in other regions, and we have much more confidence in the

estimates for the rest of the country.

5 Conclusions

In most regions of the U.S., almost all county GSDs or annual-average living-area radon
concentrations fall between 2.1 and 2.4. Possible exceptions include Region I (New England)
and Region IX (the Southwest), but a more likely explanation for the deviation of the
estimates in those regions is a lack of model fit for very low concentration measurements,
due to background substraction effects.

Both the within- and between-census-block variations are substantial. Even within a
given census block, log-space variances tend to be about 0.3 to 0.4, implying coeflicients of
variation of exp(v/0.3) = 1.7 to exp(v/0.4) = 1.9. Thus, even if a census block GM is exactly
known, there is a large amount of variation between individual homes in the census block.
The number of degrees of freedom in the distribution describing the census block GSDs is
small, suggesting that some census blocks are much more variable than others. This is not
surprising, since all census blocks contain about the same number of people (of the order
of 200) and thus vary greatly in spatial extent, and one expects that spatially large census
blocks will be considerably more variable than spatially small ones, which may encompass

only a single city block.
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A Relationship between GM/GSD and “exposure bins”.

Suppose counties are grouped into “exposure bins” based on geometric mean concentra-
tion. The individual homes in a given county will have radon concentrations that vary
substantially about the GM, so although the county is in a particular bin the homes will be
apportioned among all of the bins. Table 2 shows the fraction of homes in each of six bins,
as a function of county GM, assuming a county GSD of 2.2. The bins used here are those
used in Bogen (1992) in fitting a nonlinear dose-response model to lung cancer mortality

data and radon measurements.

B Fraction of homes over 4 pCi/L, for various GMs and
GSDs

The fraction of homes exceeding the EPA’s recommended action level of 4 pCi/L naturally
varies as a function of GM and GSD (see table 3). Almost all county GSDs fall between
2.0 and 2.6, with most closer to the center of this range. The fraction of homes exceeding
4 pCi/L shows large relative variation (but small absolute variation) as a function of GSD
when the GM is low; for higher values of GM, the relative variation is fairly small as a
function of GSD——indeed, when the GM is exactly 4.0 pCi/L, the fraction of homes over
4 pCi/L is always 0.5, independent of the GSD. For practical purposes, the variation as a
function of GSD is most important for GMs between 1.5 and 2.0: for counties with GMs
under 1.5 pCi/L, under 10% of homes exceed 4 pCi/L so these counties would not likely be
the focus of detailed study, whereas for homes over 2 pCi/L, over 20% of homes exceed 4
pCi/L so these counties are “at risk” no matter what the GSD. Only in the intermediate
range can the GSD be the deciding factor in whether the county merits special attention

based on the fraction of homes over 4 pCi/L.
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Table 2: Fraction of homes in each exposure bin, as a function of county GM, assuming a
county GSD of 2.2 and using the same bins as Bogen (1992). Horizontal lines separate GM
regions in which different bins have a plurality of the homes. Note that for this GSD and
these bins, the fifth bin never has a plurality. The GM increments by 0.2 for GM values
above 2.4 pCi/L.

GM | <0.394 0.394-0.787 0.787-1.38 1.38-2.17 2.17-3.15 > 3.15
pCi/L | pCi/L pCi/L pCi/L pCi/L pCi/L  pCi/L
0.1 0.959 0.037 0.004 0.000 0.000  0.000
0.2 0.805 0.154 0.034 0.006 0.001 0.000
0.3 0.635 0.254 0.084 0.020 0.005  0.001
04 0.492 0.312 0.137 0.042 0.012 0.004
0.5 0.381 0.336 0.184 0.068 0.022 0.010
0.6 0.297 0.338 0.220 0.094 0.034 0.018
0.7 0.233 0.326 0.246 0.119 0.047  0.028
0.8 0.185 0.307 0.264 0.142 0.062  0.041
0.9 0.147 0.285 0.274 0.162 0.076  0.056
1.0 0.119 0.262 0.278 0.179 0.090 0.073
1.1 0.096 0.239 0.278 0.192 0.103  0.091
1.2 0.079 0.217 0.274 0.203 0.116  0.110
1.3 0.065 0.197 0.268 0.212 0.127  0.131
14 0.054 0.179 0.260 0.218 0.137 0.152
1.5 0.045 0.162 0.251 0.222 0.146 0.173
1.6 0.038 0.146 0.242 0.225 0.154 0.195
1.7 0.032 0.132 0.231 0.226 0.161 0.217
1.8 0.027 0.120 0.221 0.226 0.167 0.239
1.9 0.023 0.109 0.211 0.224 0.172 0.261
2.0 0.020 0.099 0.201 0.222 0.177  0.282
2.1 0.017 0.090 0.191 0.219 0.180  0.304
2.2 0.015 0.082 0.181 0.216 0.182 0.324
2.3 0.013 0.074 0.172 0.212 0.184 0.345
2.4 0.011 0.068 0.163 0.208 0.186  0.365
2.6 0.008 0.056 0.146 0.198 0.187  0.404
2.8 0.006 0.047 0.131 0.188 0.186  0.441
3.0 0.005 0.040 0.118 0.178 0.184 0475
3.2 0.004 0.034 0.105 0.168 0.181 0.508
3.4 0.003 0.029 0.095 0.158 0.177  0.539.
3.6 0.003 0.024 0.085 0.148 0.172  0.567
3.8 0.002 0.021 0.077 0.139 0.167  0.594
4.0 0.002 0.018 0.069 0.130 0.162  0.619
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Table 3:

Fraction of homes exceeding 4 pCi/L, for various values of GM and GSD

2.0

GSD

2.2

24

2.6

GM

0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.001
0.023
0.079
0.159
0.249
0.339
0.424

0.004
0.039
0.107
0.190
0.276
0.358
0.433

0.009
0.057
0.131
0.214
0.296
0.371
0.439

0.015
0.073
0.152
0.234
0.311
0.382
0.444
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C Computer code for estimating the parameters

The following is computer code, in the “S” programming language, that was used to cal-
culate the parameter estimates in this paper. Portions of the code will probably be under-
standable to anyone with programming experience, but some knowledge of S is needed to
really make sense of it. One important note is that S is vector-oriented, so that for instance
“phi” is an entire vector of values, and “ybar” is a vector of values; “ybar - phi” is a vector

containing the componentwise difference between ybar and phi.

phil2.gibbs <- function(y,y.gril,y.gr2,nul0,nu20,v10, v20, nrep) {
# gibbs sampler for means and variances that vary among groups
# nul0, vi0: degrees of freedom and central estimate of variance
# for census block effects (assumed inv-chisq distrib)
# nu20, v20: same as above, for within-block variances
# note: EACH subgroup defined by y.gr2 must have a unique entry in
# y.gr2...e.g., if y.grl <- c(1,1,1,1,2,2,2,2), then
# y.gr2 <- ¢(1,1,2,2,3,3,4,4), NOT y.gr2 <- c(1,1,2,2,1,1,2,2)
grilist <~ unique(y.gril)
nthetas <- length(grilist)

# within each group i, count number of subgroups
nphi <- rep{(0,nthetas)
for (i in 1:nthetas) {

nphi[i]l <- length(unique(y.gr2[y.gri==grilist[i]]))
}

nphis <- sum(nphi)
print(c(nthetas, nphis))

# calculate observed means, and initial variance estimates
theta <- rep(0,nthetas)

ybar <- rep(0,nphis)

v <- rep(1,nphis)
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n <- rep{1,nphis)
gr2 <- rep(0,nphis)
whichct <~ rep(0,nphis)
ij <= 0
for (i in 1:nthetas) {
gr2list <- unique(y.gr2(y.gri==grilist[i]])
asumi <- 0
for(j in 1:nphili]) {
ij <= ij+1
okij <- y.gri==grilist{i] & y.gr2 == gr2list(j]
n[ij] <- sum(okij)
ybar[ij] <- mean(y[okij])
v[ij] <~ var(y[okijl)
whichct[ij] <- i
gr2[ijl <- gr2list([j]

# print(c(ij,n[ij],v[ij]1))
asumi <- asumi + ybar[ij]
asumi <- asumi + ybar[ij]

}
thetali] <- asumi/nphil[i]
}

vlis.na(v)] <- mean(v[!is.na(v)])

v[v<0.0001] <- mean(v)

print(c(‘ ‘mean, var of v[ij]’’,mean(v),var(v)))
igrp <- match(y.gri,unique(y.gri))

isubgrp <- match(y.gr2,gr2)

reorder <- match(gr2,sort(unique(y.gr2)))

print (igrp)

print (isubgrp)
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print(c(‘‘ybar[1]°’’,ybar[1]))
sigma2 <- rep(viO,nthetas)
phi <- rep(0,nphis)

mu <- mean(ybar)

tau <- var(ybar)

aout <- matrix(0,nrow=nrep,ncol=(2*nthetas+2*nphis+6))

for (jrep in l:nrep) {
# subgroup effects, given all other parameters, and

# subgroup variances, given all other parameters

aprec <- 1/sigma2[whichct] + n/v

amean <- (n*(ybar-thetalwhichct])/v)/aprec

adf <- nu20 + n

phi <- rnorm(n=nphis,mean=amean,sd=sqrt(1/aprec))

#print (c (mean(phi),var(phi)))

resid <- y - (thetaligrp]+phi[isubgrpl)
vv <- unlist(tapply(resid~2,list(y.gr2),sum))

#vv is in order by the value of y.gr2, which isn’t what we want---
#ve need to retain the same order as y.gr2, so if y.gr2 is unsorted,
#vv is unsorted in the same way. So put it back.

vv <~ vv[reorder]
aterm <- (nu20%*v20+vv)/(nu20+n)

x <- rchisq(nphis,adf)

v <- adf*aterm/x
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# group effects, given all other parameters

# (given phi and v, each y is like an observation of theta)
scalres <- unlist(tapply(n*(ybar-phi)/v,list(whichct),sum))
precsum <- unlist(tapply(n/v,list(whichct),sum))

aprec <- 1/tau”2 + precsum

amean <- (mu/tau”2 + scalres)/aprec

theta <- rnorm(n=nthetas,mean=amean,sd=sqrt(1/aprec))

# now variance of subgroup effects within each group

# ( phi ~ N(O, sigma_i"2) )

adf <- nuil + nphi

vv <~ unlist(tapply(phi~2,list(whichct),sum))

aterm <- (nul0*v10 + vv)/(nul0 + nphi)

x <- rchisq(nthetas,adf)

sigma2 <- adf * aterm/x

# hyperparameters

# v10

# sigma2 ~ Inv-chisq(nu, s72) --> s”2|sigma,nu is gamma-distributed
# (if noninformative prior):

beta <~ nulO*sum(1i/sigma2)/2

alpha <- nthetas*nui0/2 + 1

v10 <- rgamma(1l,shape=alpha)/beta

#

# similarly for v20

beta <- nu20*sum(1/v)/2

alpha <- nphis*nu20/2 + 1

v20 <- rgamma(1l,shape=alpha)/beta

#

# Now a metropolis step for the nulQ values:

nulOp <- exp(log(nul0) + rnorm(n=1,mean=0,sd=0.2))
corterm <- 0

# corterm <- log(nuiOp) - log(nuio)
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terml <- nthetas*(nulOpx*log(nulOp/2)-nulO*log(nui0/2))/2
term2 <- nthetas*(nulOp-nul0)*log(v10)/2

term3 <- (nul0-nulOp)*sum(log(sigma2))/2

term4 <- (nui0-nulOp)*v10*sum(1l/sigma2)/2

term5 <- nthetas*log(gamma(nul0/2)/gamma(nulOp/2))

lgratio <- terml+term2+term3+term4+termS+corterm

if(lgratio > 0) {

nul0 <- nulOp

# print(round(c(termi,term2,term3,term4,term5,lgratio)))
} else {

if (runif(n=1,min=0,max=1) < exp(lgratio)) {

nul0 <- nulOp

# metropolis step for nu20 values:
nu20p <- exp(log(nu20) + rnorm(n=1, mean=0, sd=0.2))
corterm <- 0
corterm <- log(nu20p) - log(nu20)
terml <- nphis*(nu20p*log(nu20p/2)-nu20*log(nu20/2))/2
term2 <- nphis*(nu20p-nu20)x*log(v20)/2
term3 <- (nu20-nu20p)*sum(log(v))/2
term4 <- (nu20-nu20p)*v20*sum(1i/v)/2
termS <- nphis*log(gamma(nu20/2)/gamma(nu20p/2))

lgratio <- termi+term2+term3+termd+termb+ corterm

if (lgratio > 0) {
nu20 <- nu20p
} else {
if (runif(n=1,min=0,max=1) < exp(lgratio)) {
nu20 <- nu20p
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}

# now mu, tau

mu <- rnorm(n=1, mean=mean(theta),sd=sqrt(tau/nthetas))

tau2 <- sum((mu~theta)"2)/nthetas

tau <- sqrt(nthetas*tau2 / rchisq(l,nthetas) )

print (round(c(jrep,mu,tau~2,nu10,v10,nu20,v20),2))

# note: we’re returning tau (an s.d.), but also v10 and v20 (vars)
aout[jrep,] <- c(theta,sigma2,phi,v,mu,tau,nui0,v10,nu20,v20)

} # end jrep loop
return(aout)

} # end function
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